DOC PREVIEW
Berkeley ELENG 141 - Lecture 6 MOS Capacitances, Propagation Delay

This preview shows page 1-2-3-24-25-26 out of 26 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1EE141 – Fall 2005Lecture 6MOS Capacitances,MOS Capacitances,Propagation DelayPropagation DelayEE141 2Important! Check course home page periodically for announcements Homework 2 is due TODAY by 5pm• In 240 Cory Homework 3 will be posted TODAY• Due Thursday Sep 22 by 5pm2EE141 3Today’s Lecture The MOS transistor characteristics for transient analysis Propagation delayEE141 4ReviewMOS Transistor ModelMOS Transistor ModelCMOS Inverter VTCCMOS Inverter VTC3EE141 5Important to Remember!0 0.5 1 1.5 2 2.500.511.522.5x 10-4VDS(V)ID(A)VelocitySaturationVDS= VGTVDSAT= VGTSaturationLinearVDS= VDSATLinearRelationshipQuadraticRelationshipEE141 6A Unified Model for Manual AnalysisBDGIDS()DSGTDVVVVLWkI ⋅+⋅−⋅⋅⋅=λ12'2minminfor VGT≤ 0: ID=0with Vmin= min (VGT, VDS, VDSAT)for VGT≥ 0:define VGT= VGS– VT4EE141 7VDSpIDpVGSp= -2.5VGSp= -1VDSpIDnVin= 0Vin= 1.5VoutIDnVin= 0Vin= 1.5VoutIDnPMOS Load LinesVin= VDD+ VGSpIDn= -IDpVout= VDD+ VDSpVin= VDD+ VGSpIDn= -IDpVout= VDD+ VDSp Coordinate transform: IDp(VDSp) → IDn(Vout)EE141 8IDnVoutVin = 2.5Vin = 2Vin = 1.5Vin = 0Vin = 0.5Vin = 1NMOSVin = 0Vin = 0.5Vin = 1Vin = 1.5Vin = 2Vin = 2.5Vin = 1Vin = 1.5PMOSCMOS Inverter Load Characteristics5EE141 9CMOS Inverter VTCVin0.5 1 1.5 2 2.5NMOS resPMOS offNMOS satPMOS satNMOS offPMOS resNMOS satPMOS resNMOS resPMOS sat0.511.522.5VoutEE141 10Inverter Gain0 0.5 1 1.5 2 2.5-18-16-14-12-10-8-6-4-20Vin (V)gainpnDSATppDSATnnMDVkVkVIgλλ−⋅+⋅⋅−=)(1)()2(1pnDSATnTnMVVVrgλλ−⋅−−+≈6EE141 11Gain as a function of VDD0 0.5 1 1.5 2 2. 500.511.522.5Vin (V)Vout(V)Vin(V)Vout(V)0 0.05 0.1 0.15 0.200.050.10.150.2Vin (V)Vout (V)Vin(V)Vout(V)Gain = -1EE141 12Impact of Process Variations0 0.5 1 1.5 2 2.500.511.522.5Vin(V)Vout(V)Good PMOSBad NMOSGood NMOSBad PMOSNominal “Good” means:• tox• L• W• Vth7EE141 13OutlineDynamic Operation of Dynamic Operation of MOS TransistorMOS Transistor• MOS Capacitances• Propagation DelayEE141 14DSGBCGDCGSCSBCDBCGBMOS Capacitances8EE141 15The Gate CapacitanceWLtCoxoxgateε=toxn+n+Cross sectionLGate oxidetoxn+n+Cross sectionLGate oxidexdxdLdPolysilicon gateTop viewGate-bulkoverlapSourcen+Drainn+WxdxdLdPolysilicon gateTop viewGate-bulkoverlapSourcen+Drainn+WEE141 16Gate CapacitanceSDGCGCSDGCGCSDGCGCCut-off Resistive SaturationMost important regions in digital design: saturation and cut-offTextbook: page 109CGCBCGCSCGCD9EE141 17Cgateas a function of VGS(with VDS= 0)Cgateas a function of the degree of saturationGate Capacitance01VDS /(VGS – VT)CGCCGCSCGCDWLCox2WLCox23WLCoxWLCox2WLCoxVGSCGCCGCS=CGCDCGCBEE141 18Measuring the Gate CapVGSI-1.5 -1 -0.5 0345678910x10-162Gate Capacitance (F)0.5 1 1.5 2-2Capacitance (F)VGS(V)10EE141 19Diffusion CapacitanceBottomSide wallSide wallChannelSourceChannel-stop implantSubstrateWNA+NALSNDxjCdiff= Cbottom+ Csw= Cj· AREA + Cjsw· PERIMETER= Cj·LSW + Cjsw(2LS+ W)EE141 20Junction CapacitancemDjjVCC)1(00φ−=m = 0.5: abrupt junctionm = 0.33: linear junction11EE141 21Linearizing the Junction Cap Replace non-linear capacitance bylarge-signal equivalent linear capacitancewhich displaces equal charge over voltage swing of interest0)()(jeqlowhighlowjhighjDjeqCKVVVQvQVQC ⋅=−−=∆∆=[]mlowmhighlowhighmeqVVmVVK−−−−−−⋅−−=10100)()()1()(φφφEE141 22CGDCGSCSBCDBCGBCgate= CGB+ CGS+ CGDCapacitive Device Model= CGCS+ CGSO= CGCD+ CGDO= CGCB= CdiffGSDB= Cdiff12EE141 23Capacitances in 0.25µm CMOS ProcessTextbook: page 112EE141 24.MODEL Parameters MOS1 .MODEL Modname NMOS/PMOS <VT0=VT0…>13EE141 25PolysiliconInOutMetal1VDDGNDPMOSNMOSTwo Inverters1.2µm=2λEE141 26VDDTwo Inverters (modern view)14EE141 27FanoutVoutVinCLSimplifiedModelM3M4M1M 2CwCg3Cdb1Cg4Vout2Cdb2VDDVDDVinVoutCgd12Computing the CapacitancesEE141 28The CMOS Inverter: CinCgdn,pCgspCgsnSGDSVoutVinCinCL15EE141 29Miller EffectVoutVinZLZFAi1AVoutVini1Z1Z2ZLi1 =Vin (1-A)ZFi1 =VinZ1EE141 30Miller EffectZFAAZ1Z2Z1 =ZF1−AZ2 =ZF1A1−C1= CF·(1−A) C1= CF·(1−1/A)16EE141 31CMOS Inverter Example: CinCgdCgspCgsnCinA = -1Cgs = Cgsn + CgspCgd = Cgdn + CgdpCin= Cgs+ Cgd(1-A)+∆V-∆VEE141 32VinM1Cgd1Vout∆V∆VVinM1Vout∆V∆V2Cgd1The Miller Effect“A capacitor experiencing identical but opposite voltage swingat both terminals can be replaced by a capacitor to ground,whose value is two times the original value”2Cgd117EE141 33FanoutVoutVinCLSimplifiedModelM3M4M1M 2CwCg3Cdb1Cg4Vout2Cdb2VDDVDDVinVoutCgd12Computing the CapacitancesEE141 34Computing the Capacitances18EE141 35OutlineDynamic Operation of Dynamic Operation of MOS TransistorMOS Transistor• MOS Capacitances• Propagation DelayEE141 36CMOS Inverter Propagation Delay: Approach 1VoutIavgVDDVin=VDDCLavgswingLpHLIVCt2⋅=DDnLpHLVkCt⋅~19EE141 37CMOS Inverter Propagation Delay: Approach 2VoutRnVDDVin=VDDCL)(LonpHLCRft⋅=LonCR⋅=69.00.360.51RonCLtVoutln(0.5)VDDEE141 38MOS Transistor as a SwitchTraversed pathIDVDSVDDVDD /2VGS = VDDRmidR0∫∫⋅−=⋅−===212121)()(1)(1))((1212ttDDSttontttoneqdttItVttdttRtttRavgR())()(2121tRtRRononeq+⋅≈VGS≥ VTSDRon20EE141 39The Transistor as a SwitchVGS≥ VTSDRon()()⋅+⋅+⋅+⋅⋅=212121DDDSATDDDDDSATDDeqVIVVIVRλλ⋅⋅−⋅≈DDDSATDDeqVIVRλ65143IDVDSVDDVDD /2VGS = VDDRmidR0()021RRRmideq+⋅=EE141 400 0.5 1 1.5 2 2.5x 10-10-0.500.511.522.53t (sec)Vout(V)tp= 0.69 CL·(Reqn+Reqp)/2?tpLHtpHLTransient Response21EE141 41Design for Performance Keep capacitances small Increase transistor sizes• watch out for self-loading! Increase VDD(?)EE141 420.8 1 1.2 1.4 1.6 1.8 2 2.2 2.411.522.533.544.555.5VDD(V)tp(normalized)Delay as a function of VDD)2(')(52.04369.0DSATnTnDDDSATnnnDDLDSATnDDLpHLVVVVkLWVCIVCt−−⋅⋅⋅⋅=⋅=Req22EE141 432 4 6 8 10 12 1422.22.42.62.833.23.43.63.8x 10-11Stp(sec)Device Sizing(fixed load)Self-loading effect:Intrinsic capacitancesdominateEE141 441 1.5 2 2.5 3 3.5 4 4.5 533.544.55x 10-11βtp(sec)NMOS/PMOS RatiotpLHtpHLtpβ = Wp/Wn23EE141 45tpHL(nsec)0.350.30.250.20.15trise (nsec)10.80.60.40.20tp= tstep(i)+ η·tstep(i-1)Impact of Rise Time on DelayEE141 46 Threshold Variations Sub-threshold Conduction Parasitic ResistancesThe Sub-Micron MOS Transistor24EE141 47VTLLong-channel thresholdThreshold as a function ofchannel length (for low VDS) VDSVTThreshold VariationsLow VDSthresholdDrain induced barrier lowering (DIBL) (for low L) EE141 48Sub-Threshold ConductionTypical values for


View Full Document

Berkeley ELENG 141 - Lecture 6 MOS Capacitances, Propagation Delay

Documents in this Course
Adders

Adders

7 pages

Memory

Memory

33 pages

I/O

I/O

14 pages

Lecture 8

Lecture 8

34 pages

Lab 3

Lab 3

2 pages

I/O

I/O

17 pages

Project

Project

6 pages

Adders

Adders

15 pages

SRAM

SRAM

13 pages

Load more
Download Lecture 6 MOS Capacitances, Propagation Delay
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 6 MOS Capacitances, Propagation Delay and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 6 MOS Capacitances, Propagation Delay 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?