DOC PREVIEW
Berkeley ELENG 141 - Lecture 7 Propagation Delay, Power Dissipation

This preview shows page 1-2-21-22 out of 22 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1EE141 – Fall 2005Lecture 7Propagation Delay, Propagation Delay, Power DissipationPower DissipationEE141 2Important! Software Lab 3 this week Enrollments increased to 86 Hw-3 due on Thursday 5pm• Check it out early (time to ask questions)2EE141 3Today’s Lecture Inverter Performance Power DissipationReview:MOS Capacitances: MOS Capacitances: Dynamic BehaviorDynamic Behavior3EE141 5CGDCGSCSBCDBCGB(Miller)Capacitive Device Model= CGCS+ CGSO= CGCD+ CGDO= CGCB= CdiffGSDB= CdiffEE141 6Gate-Channel CapacitanceSDGCGCSDGCGCSDGCGCCut-off Resistive SaturationOff/Lin Æ Cgate= Cox·W·LeffTextbook: page 109CGCBCGCSCGCDSat Æ Cgate= (2/3)·Cox·W·LeffoxoxoxtCε=4EE141 7Gate Overlap CapacitancedoxOxCC⋅=xdxdLdPolysilicon gateTop viewGate-bulkoverlapSourcen+Drainn+WxdxdLdPolysilicon gateTop viewGate-bulkoverlapSourcen+Drainn+WOff/Lin/Sat Æ CGSO= CGDO= CO·Wtoxn+n+Cross sectionLGate oxidetoxn+n+Cross sectionLGate oxideEE141 8Diffusion CapacitanceBottomSide wallSide wallChannelSourceChannel-stop implantSubstrateWNA+NALSNDxjCdiff= Cbottom+ Csw= Cj· AREA + Cjsw· PERIMETEROff/Lin/Sat Æ Cdiff= Cj·LS·W + Cjsw·(2LS+W)5EE141 9Capacitive Device Model Gate-Channel Capacitance• CGC= Cox·W·Leff(Off, Linear)• CGC= (2/3)·Cox·W·Leff(Saturation) Gate Overlap Capacitance• CGSO= CGDO= CO·W (Always) Junction/Diffusion Capacitance• Cdiff= Cj·LS·W + Cjsw·(2LS+ W) (Always)Zero-bias Æ Cdiff> CgateMOS On Æ Cdiff≤ CgateEE141 10FanoutVoutVinCLSimplifiedModelM3M4M1M 2CwCg3Cdb1Cg4Vout2Cdb2VDDVDDVinVoutCgd12Computing the Capacitances123Miller effectReverse biased junctionOff Æ Sat (M4)Lin (M3)4No Miller effect6EE141 11Computing the CapacitancesMiller effect(Off Æ Sat*)(Lin*)* assuming LH transition at VoutReverse biased junction123Propagation DelayPropagation Delay7EE141 13CMOS Inverter Propagation Delay: Approach 1VoutIavgVDDVin=VDDCLavgswingLpHLIVCt2⋅=DDnLpHLVkCt⋅~EE141 14CMOS Inverter Propagation Delay: Approach 2VoutRnVDDVin=VDDCL)(LonpHLCRft⋅=LonCR⋅=69.00.360.51RonCLtVoutln(0.5)VDD8EE141 15MOS Transistor as a SwitchTraversed pathIDVDSVDDVDD /2VGS = VDDRmidR0∫∫⋅−=⋅−===212121)()(1)(1))((1212ttDDSttontttoneqdttItVttdttRtttRavgR())()(2121tRtRRononeq+⋅≈VGS≥ VTSDRonEE141 16The Transistor as a SwitchVGS≥ VTSDRon()()⋅+⋅+⋅+⋅⋅=212121DDDSATDDDDDSATDDeqVIVVIVRλλ⋅⋅−⋅≈DDDSATDDeqVIVRλ65143IDVDSVDDVDD /2VGS = VDDRmidR0()021RRRmideq+⋅=9EE141 170 0.5 1 1.5 2 2.5x 10-10-0.500.511.522.53t (sec)Vout(V)tp= 0.69 CL·(Reqn+Reqp)/2?tpHLtpLHTransient ResponseEE141 18Design for Performance Keep capacitances small Increase transistor sizes• watch out for self-loading! Increase VDD(?)10EE141 190.8 1 1.2 1.4 1.6 1.8 2 2.2 2.411.522.533.544.555.5VDD(V)tp(normalized)Delay as a function of VDD)2(')(52.04369.0DSATnTnDDDSATnnnDDLDSATnDDLpHLVVVVkLWVCIVCt−−⋅⋅⋅⋅=⋅=ReqEE141 202 4 6 8 10 12 1422.22.42.62.833.23.43.63.8x 10-11Stp(sec)Device Sizing(fixed load)Self-loading effect:Intrinsic capacitancesdominate11EE141 211 1.5 2 2.5 3 3.5 4 4.5 533.544.55x 10-11βtp(sec)NMOS/PMOS RatiotpLHtpHLtpβ = Wp/WnEE141 22tpHL(nsec)0.350.30.250.20.15trise (nsec)10.80.60.40.20Impact of Rise Time on Delaytp= tstep(i)+ η·tstep(i-1)12Power DissipationPower DissipationEE141 24Where Does Power Go in CMOS? Dynamic Power Consumption• Charging and discharging capacitors Short Circuit Currents• Short-circuit path between supply rails during switching Leakage• Leaking diodes and transistors13EE141 25#1: Dynamic Power DissipationVinVoutCLVdd Not a function of transistor sizes! Need to reduce CL, Vdd, and f to reduce powerEnergy/transition = CL·Vdd2Power = Energy/transition·f = f·CL·Vdd2EE141 26Modification for Circuits with Reduced Swing Can exploit reduced swing for lower power(e.g., reduced bit-line swing in memory)E0→1 = CL·Vdd·(Vdd– Vt)CLVddVdd –VtVdd14EE141 27Adiabatic Chargingi(t) RCCConsiderCharging a capacitor∫⋅⋅=⋅=TavgCTICdtiCV011221ddVC ⋅TVCICavg⋅=202022)(CTavgTavgdisVCTCRTIRdtIRdttiRE ⋅⋅⋅=⋅⋅=⋅≥⋅=∫∫EE141 28Adiabatic ChargingCCCIVdtdVCRVIRV +⋅=+⋅=VI= constExponential current221CRVCE ⋅=2CRVCTRCE ⋅=I = IavgLinear ramp on VIminimal energywins if T > 2RCtItItVtV15EE141 29Node Transition Activity and Power Consider switching a CMOS gate for N clock cyclesEN = CL·Vdd2·n(N)EN: the energy consumed for N clock cyclesn(N): the number of 0→1 transitions in N clock cyclesclkddLNclkNNavgfVCNNnfNEP ⋅⋅⋅=⋅=∞→∞→2)(limlimNNnN)(lim10∞→→=αPavg = α0→1·CL·Vdd2·fclkEE141 30#2: Short-Circuit CurrentsVinVoutCLVdd0.150.100.055.04.03.02.01.00.0IVDD(mA)Vin(V)16EE141 31Short circuit current goes to zero if tfall>> trise,but can’t do this for cascade logic, so ...How To Keep Short-Circuit Currents Down?EE141 320 1 2 3 4 5012345678Vdd =1.5Vdd =2.5Vdd =3.3Minimizing Short-Circuit Power Keep the input and output rise/fall times the same (<10% of total consumption) If Vdd< VTn+ |VTp| then short-circuit power can be eliminated!From: Veendrick, IEEE Journal of Solid-State Circuits, Aug’84tsin /tsoutPnorm17EE141 33Vo u tVd dSub-ThresholdCurrentDrain JunctionLeakageSub-threshold current is one of the most compelling issuesin low-energy circuit design!#3: LeakageEE141 34Np+p+Reverse Leakage Current+-VddGATEIDL = JS × AJS= 10-100 pA/µm2 at 25 deg C for 0.25µm CMOSJSdoubles for every 9 deg C!Reverse-Biased Diode Leakage18EE141 35IDversus VGS0 0.5 1 1.5 2 2.5012456x 10-4Long ChannelShort ChannelquadraticlinearquadraticVGS(V)ID(A)3EE141 36Sub-Threshold ConductionTypical values for S:60 – 100 mV/decadeThe Slope FactorS is ∆VGSfor ID2 /ID1=100 0.5 1 1.5 2 2.510-1210-1010-810-610-410-2VTLinearExponentialQuadraticVGS(V)ID(A)qkTCCneIIToxDnVDTGS=+=∝φφ,1019EE141 37Sub-Threshold Leakage Component Leakage control is critical for low-voltage operationEE141 38VDSfrom 0 to 0.5V−=−kTqVnkTqVDDSGSeeII 10Sub-Threshold IDvs. VGSIDVGS20EE141 39Sub-Threshold IDvs. VDS()DSkTqVnkTqVDVeeIIDSGS⋅+−=−λ110VGSfrom 0 to 0.3VIDVDSHw3, Prob4n=1.5kT/q = 26mVEE141 40Vin=5VVoutCLVddIstatWasted energy …Should be avoided in most cases,but could help reducing energy in others (e.g. sense amps)#4: Static Power ConsumptionPstat= P(in=1)·Vdd·Istat21EE141 41 Prime choice: Reduce voltage!• Recent years have seen an acceleration in supply voltage


View Full Document

Berkeley ELENG 141 - Lecture 7 Propagation Delay, Power Dissipation

Documents in this Course
Adders

Adders

7 pages

Memory

Memory

33 pages

I/O

I/O

14 pages

Lecture 8

Lecture 8

34 pages

Lab 3

Lab 3

2 pages

I/O

I/O

17 pages

Project

Project

6 pages

Adders

Adders

15 pages

SRAM

SRAM

13 pages

Load more
Download Lecture 7 Propagation Delay, Power Dissipation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 7 Propagation Delay, Power Dissipation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 7 Propagation Delay, Power Dissipation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?