DOC PREVIEW
Berkeley ELENG 141 - Sequential Logic

This preview shows page 1-2-21-22 out of 22 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1EE141Sequential LogicEE141- Spring 2003Lecture 22EE141Writing into a Static LatchCLKCLKCLKQDCLKCLKDConverting into a MUXForcing the state(can implement as NMOS-only)Use the clock as a decoupling signal,that distinguishes between the transparent and opaque states2EE141Cross-Coupled PairsForbidden StateSSRQQQQRSQQ00Q101001010110QNOR-based set-resetThe “Overpowering” ApproachEE141Cross-Coupled NANDSQQM1M2M3M4QM5SM6LKM7RM8CLKVDDQCross-coupled NANDsAdded clockThis is not used in datapaths any more,but is a basic building memory cell3EE141Sizing IssuesOutput voltage dependenceon transistor widthTransient response4.03.53.0W/L5 and 6(a)2.52.00.00.51.01.52.0Q (Volts)time (ns)(b)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2012W=1 mµ3VoltsQ SW=0.9 mµW=0.8 mµW=0.7 mµW=0.6 mµW=0.5 mµEE141Master-Slave (Edge-Triggered) Register10DCLKQMMaster01CLKQSlaveQMQDCLKTwo opposite latches trigger on edgeAlso called master-slave latch pair4EE141Master-Slave RegisterQMQDCLKT2I2T1I1I3T4I5T3I4I6Multiplexer-based latch pairEE141Clk-Q DelayDQCLK⫺0.50.51.52.5tc ⫺ q(lh)0.5 1 1.5 2 2.50time, nsecVoltstc ⫺ q(hl)5EE141Setup TimeDQQMCLKI2⫺ T2⫺0.5Volts0.00.2 0.4time (nsec)(a) Tsetup⫽ 0.21 nsec0.6 0.8 100.51.01.52.02.53.0DQQMCLKI2⫺ T2⫺0.5Volts0.00.2 0.4time (nsec)(b) Tsetup⫽ 0.20 nsec0.6 0.8 100.51.01.52.02.53.0EE141Reduced Clock LoadMaster-Slave RegisterDQT1I1CLKCLKT2CLKCLKI2I3I46EE141Avoiding Clock OverlapCLKCLKAB(a) Schematic diagram(b) Overlapping clock pairsXDQCLKCLKCLKCLKEE141More Precise Setup TimetD ⫺ CttttC ⫺ Q1.05tC ⫺ QtSutHClkDQ(b)(a)7EE141Clk-Q DelayTSetup-1TClk-QTimeSetup-Hold Time IllustrationsCircuit before clock arrival (Setup-1 case)DCNQMCPD1SMInv1Inv2TG1Timet=0ClockDataTSetup-1EE141Clk-Q DelayTSetup-1TClk-QTimeTimet=0ClockDataTSetup-1Setup-Hold Time IllustrationsCircuit before clock arrival (Setup-1 case)DCNQMCPD1SMInv1Inv2TG18EE141Clk-Q DelayTSetup-1TClk-QTimeDCNQMCPD1SMInv1Inv2TG1Timet=0ClockDataTSetup-1Setup-Hold Time IllustrationsCircuit before clock arrival (Setup-1 case)EE141Clk-Q DelayTSetup-1TClk-QTimeDCNQMCPD1SMInv1Inv2TG1Timet=0ClockDataTSetup-1Setup-Hold Time IllustrationsCircuit before clock arrival (Setup-1 case)9EE141Timet=0ClockDataTSetup-1DCNQMCPD1SMInv1Inv2TG1Setup-Hold Time IllustrationsCircuit before clock arrival (Setup-1 case)Clk-Q DelayTSetup-1TClk-QTimeEE141Setup-Hold Time IllustrationsHold-1 caseDCNQMCPD1SMInv1Inv2TG1Timet=0DataClockTHold-10Clk-Q DelayTHold-1TClk-QTime10EE141Clk-Q DelayTHold-1TClk-QTimeTimet=0DataClockTHold-1Setup-Hold Time IllustrationsHold-1 caseDCNQMCPD1SMInv1Inv2TG10EE141Clk-Q DelayTHold-1TClk-QTimeDCNQMCPD1SMInv1Inv2TG1Timet=0DataClockTHold-1Setup-Hold Time IllustrationsHold-1 case011EE141Clk-Q DelayTHold-1TClk-QTimeDCNQMCPD1SMInv1Inv2TG1Timet=0ClockTHold-1DataSetup-Hold Time IllustrationsHold-1 case0EE141Clk-Q DelayTHold-1TClk-QTimeDCNQMCPD1SMInv1Inv2TG1Timet=0ClockTHold-1DataSetup-Hold Time IllustrationsHold-1 case0⇒12EE141Other Latches/Registers: C2MOSM1DQM3CLKM4M2CLKVDDCL1XCL2Master StageM5M7CLKCLKM8M6VDDSlave StageKeepers can be added to staticizeEE141Other Latches/Registers: TSPCCLKnVDDCLKVDDInOutCLKVDDCLKVDDOutNegative latch(transparent when CLK= 0)Positive latch(transparent when CLK= 1)13EE141Including Logic in TSPCCLKn CLKVDDVDDQPUNPDNCLKVDDQCLKVDDIn1In1In2In2AND latchExample: logic inside the latchEE141TSPC RegisterCLKCLKDVDDM3M2M1CLKYVDDQQM9M8M7CLKXVDDM6M5M414EE141Pulse-Triggered LatchesMaster-SlaveLatchesDClkQ DClkQClkDataDClkQClkDataPulse-TriggeredLatchL1 L2 LWays to design an edge-triggered sequential cell:EE141Pulsed LatchesCLKGDVDDM3M2M1CLKGVDDM6QM5M4CLKCLKGVDDXMPMN(a) register (b) glitch generationCLKCLKG(c) glitch clock15EE141Pulsed LatchesHybrid Latch – Flip-flop (HLFF), AMD K-6 and K-7 :P1M3M2DCLKM1P3M6QxM5M4P2CLKDEE141HLFF Timing20.50.00.51.01.52.02.53.00.20.0 0.4QDtime (ns)Volts0.6 0.8 1.0CLKDCLK16EE141PipeliningREGREGREGlogCLKCLKCLKOutREGREGREGlogCLKCLKCLKREGCLKREGCLKOutReferencePipelinedEE141Latch-Based PipelineF GCLKCLKn OutC1C2CLKC3CLKCLKCompute F compute G17EE141Other Sequential CircuitsSchmitt TriggerMonostable MultivibratorsAstable MultivibratorsEE141Schmitt TriggerIn OutVinVoutVOHVOLVM–VM+•VTC with hysteresis•Restores signal slopes18EE141Noise Suppression usingSchmitt TriggerVint0M−M+tVoutt0+tptEE141CMOS Schmitt TriggerMoves switching thresholdof the first inverterVinM2M1VDDXVoutM4M319EE141Schmitt TriggerSimulated VTC2.5VX(V)VM2VM1Vin(V)Voltage-transfer characteristics with hysteresis. The effect of varying the ratio of thePMOS device M4. The width is k* 0.5 m.␮2.01.51.00.50.00.0 0.5 1.0 1.5 2.0 2.52.5Vx(V)k=2k=3k=4k=1Vin(V)2.01.51.00.50.00.0 0.5 1.0 1.5 2.0 2.5EE141CMOS Schmitt Trigger (2)VDDVDDOutnM1M5M2XM3M4M620EE141Multivibrator CircuitsBistable MultivibratorMonostable MultivibratorAstable Multivibratorflip-flop, Schmitt Triggerone-shotoscillatorSRTEE141Transition-Triggered MonostableDELAYtdInOuttd21EE141Monostable Trigger (RC-based)VDDInOutABCRInBOuttVMt2t1(a) Trigger circuit.(b) Waveforms.EE141Astable Multivibrators (Oscillators)012 N-1Ring Oscillatorsimulated response of 5-stage oscillator0.00.00.51.01.52.02.5V1V3V53.020.50.5time (ns)Volts1.0 1.522EE141Relaxation OscillatorOut2CROut1IntI1I2T = 2 (log3) RCEE141Voltage Controller Oscillator (VCO)InVDDM3M1M2M4M5VDDM6VcontrCurrent starved inverterIrefIrefSchmitt Triggerrestores signal slopes0.5 1.5 2.5Vcontr(V)0.0246tpHL(nsec)propagation delay as a functionof control


View Full Document

Berkeley ELENG 141 - Sequential Logic

Documents in this Course
Adders

Adders

7 pages

Memory

Memory

33 pages

I/O

I/O

14 pages

Lecture 8

Lecture 8

34 pages

Lab 3

Lab 3

2 pages

I/O

I/O

17 pages

Project

Project

6 pages

Adders

Adders

15 pages

SRAM

SRAM

13 pages

Load more
Download Sequential Logic
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Sequential Logic and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Sequential Logic 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?