DOC PREVIEW
Berkeley ELENG 141 - Lecture 5 MOS Transistor

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EE1411EE1411EECS141EE141EE141--Fall 2006Fall 2006Digital Integrated Digital Integrated CircuitsCircuitsLecture 5Lecture 5MOS TransistorMOS TransistorEE1412EECS141AnnouncementsAnnouncements Lab 2 this week! Lab 3 next week Homework #2 is due today Homework #3 due next TuesdayEE1412EE1413EECS141Class MaterialClass Material Last lecture CMOS manufacturing process Design rules Today’s lecture MOS transistor operation and modeling  Reading (3.3.1-3.3.2)EE1414EECS141MOS TransistorMOS TransistorEE1413EE1415EECS141What is a Transistor?What is a Transistor?|VGS|A MOS Transistor|VGS| ≥ |VT|SDRonA Switch!SDGEE1416EECS141Switch Model of MOS TransistorSwitch Model of MOS Transistor|VGS|SDG|VGS| < |VT||VGS| > |VT|RonSDSDEE1414EE1417EECS141NMOS and PMOSNMOS and PMOSVGS> 0SDGVGS< 0SDGNMOS Transistor PMOS TransistorEE1418EECS141SDGBSDGSDGSDGNMOS Enhancement NMOS DepletionPMOS EnhancementNMOS withBulk ContactMOS Transistors: Types and SymbolsMOS Transistors: Types and SymbolsEE1415EE1419EECS141n+p-substrateDSGBVGS+–Depletionregionn-c hanne ln+Threshold Voltage: ConceptThreshold Voltage: ConceptEE14110EECS141The Threshold VoltageThe Threshold Voltage()FSBFTTVVV φ−+φ⋅γ+= 220iATFnNln⋅φ=φ Threshold Fermi potential2ΦFis approximately −0.6V for p-type substratesγ is the body factorVT0is approximately 0.45V for our processEE1416EE14111EECS141The Body EffectThe Body Effect-2.5 -2 -1.5 -1 -0.5 00.40.450.50.550.60.650.70.750.80.850.9VBS (V)VT (V)VT0reverse body biasEE14112EECS141n+n+p-substrateDSGBVGSxLV(x)+–VDSIDTransistor in Linear ModeTransistor in Linear ModeVGS> VDS+ VTEE1417EE14113EECS141The Drain CurrentThe Drain Current[]TGSoxiVxVVCxQ−−⋅−= )()(oxoxoxtCε= Charge in the channel is controlled by the gate voltage: Drain current is proportional to charge and velocity:WxQxIinD⋅⋅υ−= )()(dxdVxxnnn⋅μ=ξ⋅μ−=υ )()(EE14114EECS141The Drain CurrentThe Drain Current()dVVVVWCdxITGSoxnD⋅−−⋅⋅⋅μ=⋅ Combining velocity and charge: Integrating over the channel:()⎥⎥⎦⎤⎢⎢⎣⎡−⋅−⋅⋅=22DSDSTGSnDVVVVLWkI’Transconductance:oxoxnoxnntCkε⋅μ=⋅μ=’EE1418EE14115EECS141n+n+SGVGSDVDS > VGS - VTVGS - VT+-Transistor in SaturationTransistor in SaturationPinch-offVT< VGS< VDS+ VTEE14116EECS141SaturationSaturation For VGD< VT, the drain current saturates:()22TGSnDVVLWkI −⋅⋅=’ Including channel-length modulation:()( )DSTGSnDVVVLWkI ⋅λ+⋅−⋅⋅= 122’CLMEE1419EE14117EECS141Modes of OperationModes of OperationCutoff:VGS< VTResistive (Linear):VGS> VDS+VTSaturation:VT< VGS< VDS+ VT ()⎥⎥⎦⎤⎢⎢⎣⎡−⋅−⋅⋅=22DSDSTGSnDVVVVLWkI’()22TGSnDVVLWkI −⋅⋅=’0=DIEE14118EECS141QuadraticRelationship0 0.5 1 1.5 2 2.50123456x 10-4VGS= 2.5 VVGS= 2.0 VVGS= 1.5 VVGS= 1.0 VResistive SaturationVDS= VGS-VTCurrentCurrent--Voltage Relations:Voltage Relations:A Good OlA Good Ol’’TransistorTransistorVDS(V)ID(A)EE14110EE14119EECS141A Model for Manual AnalysisA Model for Manual AnalysisSDGID()⎥⎥⎦⎤⎢⎢⎣⎡−⋅−⋅⋅=22DSDSTGSnDVVVVLWkI’()( )DSTGSnDVVVLWkI ⋅λ+⋅−⋅⋅= 122’()FSBFTTVVV φ−+φ⋅γ+= 220VDS> VGS– VTVDS< VGS– VTwithResistive:Saturation:EE14120EECS141LinearRelationship-40 0.5 1 1.5 2 2.500.511.522.5x 10VGS= 2.5 VVGS= 2.0 VVGS= 1.5 VVGS= 1.0 VEarlySaturationCurrentCurrent--Voltage Relations:Voltage Relations:The Deep SubThe Deep Sub--Micron TransistorMicron TransistorVDS(V)ID(A)EE14111EE14121EECS141Velocity SaturationVelocity Saturationξ(V/µm)ξc= 1.5υn(m/s)υsat= 105Constant mobility (slope = µ)Constant velocity Velocity saturates due to carrier scattering effectsEE14122EECS141Velocity SaturationVelocity SaturationIDLong-channel deviceShort-channel deviceVDSVDSATVGS-VTVGS = VDDEE14112EE14123EECS141IIDDversus Vversus VGSGS0 0.5 1 1.5 2 2.50123456x 10-4VGS(V)ID(A)0 0.5 1 1.5 2 2.500.511.522.5x 10-4VGS(V)ID(A)quadraticquadraticlinearLong Channel(L=2.5μm)Short Channel(L=0.25μm)EE14124EECS141Regions of OperationRegions of Operation-40 0.5 1 1.5 2 2.500.511.522.5x 10VGS= 2.5 VVGS= 2.0 VVGS= 1.5 VVGS= 1.0 V0 0.5 1 1.5 2 2.50123456x 10-4VGS= 2.5 VVGS= 2.0 VVGS= 1.5 VVGS= 1.0 VResistive SaturationVDS= VGS-VTVDS(V) VDS(V)ID(A)ID(A)ResistiveVelocitySaturationLong Channel(L=2.5μm)Short Channel(L=0.25μm)W/L=1.5EE14113EE14125EECS141Including Velocity SaturationIncluding Velocity SaturationApproximate velocity:And integrate current again:In deep submicron, there are four regions of operation:(1) cutoff, (2) resistive, (3) saturation and (4) velocity saturationEE14126EECS141-40 0.5 1 1.5 2 2.500.511.522.5x 10VGS= 2.5 VVGS= 2.0 VVGS= 1.5 VVGS= 1.0 V0 0.5 1 1.5 2 2.50123456x 10-4VGS= 2.5 VVGS= 2.0 VVGS= 1.5 VVGS= 1.0 VResistive SaturationVDS= VGS-VTVDS(V) VDS(V)ID(A)ID(A)Long Channel(L=2.5μm)Short Channel(L=0.25μm)Early SaturationW/L=1.5Regions of OperationRegions of OperationEE14114EE14127EECS141Regions of Operation Regions of Operation ––SimplifiedSimplifiedLinearRelationship-40 0.5 1 1.5 2 2.500.511.522.5x 10VelocitySaturationVDS(V)ID(A)VDS= VGTVDSAT= VGTSaturationLinearVDS= VDSAT Define VGT= VGS–VTVDSAT≈ L·ξcEE14128EECS141A Unified Model for Manual AnalysisA Unified Model for Manual AnalysisBDGIDS()DSGTDVVVVLWkI ⋅λ+⋅⎟⎟⎠⎞⎜⎜⎝⎛−⋅⋅⋅= 12'2minminfor VGT≤ 0: ID=0with Vmin= min (VGT, VDS, VDSAT)for VGT≥ 0:define VGT= VGS– VTEE14115EE14129EECS141Simple Model versus SPICE Simple Model versus SPICE 0 0.5 1 1.5 2 2.500.511.522.5x 10-4VDS(V)ID(A)VelocitySaturatedLinearSaturatedVDSAT=VGTVDS=VDSATVDS=VGTEE14130EECS141Transistor Model for Manual AnalysisTransistor Model for Manual AnalysisTextbook: page 103EE14116EE14131EECS141A PMOS TransistorA PMOS Transistor-2.5 -2 -1.5 -1 -0.5 0-1-0.8-0.6-0.4-0.20x 10-4VDS(V)ID(A)Assume all variablesnegative!VGS = -1.0VVGS = -1.5VVGS = -2.0VVGS = -2.5VEE14132EECS141Next LectureNext Lecture Using the MOS model: Inverter VTC and


View Full Document

Berkeley ELENG 141 - Lecture 5 MOS Transistor

Documents in this Course
Adders

Adders

7 pages

Memory

Memory

33 pages

I/O

I/O

14 pages

Lecture 8

Lecture 8

34 pages

Lab 3

Lab 3

2 pages

I/O

I/O

17 pages

Project

Project

6 pages

Adders

Adders

15 pages

SRAM

SRAM

13 pages

Load more
Download Lecture 5 MOS Transistor
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 5 MOS Transistor and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 5 MOS Transistor 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?