DOC PREVIEW
Berkeley ELENG 141 - Lecture 20 Multipliers Power

This preview shows page 1-2-20-21 out of 21 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EE1411EE1411EE141-S04EE141EE141--Spring 2004Spring 2004Digital Integrated Digital Integrated CircuitsCircuitsLecture 20Lecture 20MultipliersMultipliersPowerPowerEE1412EE141-S04Administrative StuffAdministrative Stuff Hw 6 due today Midterm 2 next weekMaterial:–Wires– Complex logic– Arithmetic Review session on WeEE1412EE1413EE141-S04Class MaterialClass Material Last lecture Adders Today’s lecture Multipliers and other arithmetic Intro to powerEE1414EE141-S04MultipliersMultipliersEE1413EE1415EE141-S04The Binary MultiplicationThe Binary MultiplicationZX··Y×Zk2kk0=MN1–+∑==Xi2ii0=M1–∑⎝⎠⎜⎟⎜⎟⎜⎟⎛⎞Yj2jj0=N1–∑⎝⎠⎜⎟⎜⎟⎜⎟⎛⎞=XiYj2ij+j0=N1–∑⎝⎠⎜⎟⎜⎟⎜⎟⎛⎞i0=M1–∑=XXi2ii0=M1–∑=YYj2jj0=N1–∑=withEE1416EE141-S04The Binary MultiplicationThe Binary Multiplicationx+Partial productsMultiplicandMultiplierResult1 0 1 0 1 01 0 1 0 1 01 0 1 0 1 01 1 1 0 0 1 1 1 00 0 0 0 0 01 0 1 0 1 01 0 1 1EE1414EE1417EE141-S04The Array MultiplierThe Array MultiplierY0Y1X3X2X1X0X3HAX2FAX1FAX0HAY2X3FAX2FAX1FAX0HAZ1Z3Z6Z7Z5Z4Y3X3FAX2FAX1FAX0HAZ2Z0EE1418EE141-S04The The MxNMxNArray MultiplierArray Multiplier——Critical PathCritical PathHA FA FA HAHAFAFAFAFAFA FA HACritical Path 1Critical Path 2Critical Path 1 & 2EE1415EE1419EE141-S04CarryCarry--Save MultiplierSave MultiplierHA HA HA HAFAFAFAHAFAHA FA FAFAHA FA HAVector Merging AdderEE14110EE141-S04Multiplier Multiplier FloorplanFloorplanSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCZ0Z1Z2Z3Z4Z5Z6Z7X0X1X2X3Y1Y2Y3Y0Vector Merging CellHA Multiplier CellFA Multiplier CellX and Y signals are broadcastedthrough the complete array.( )EE1416EE14111EE141-S04WallaceWallace--Tree MultiplierTree Multiplier6543210 6543210Partial products First stageBit position6543210 6543210Second stage Final adderFA HA(a) (b)(c) (d)EE14112EE141-S04WallaceWallace--Tree MultiplierTree MultiplierPartial productsFirst stageSecond stageFinal adderFA FA FAHA HAFAx3y3z7z6z5z4z3z2z1z0x3y2x2y3x1y1x3y0x2y0x0y1x0y2x2y2x1y3x1y2x3y1x0y3x1y0x0y0x2y1EE1417EE14113EE141-S04WallaceWallace--Tree MultiplierTree MultiplierFAFAFAFAy0y1y2y3y4y5SCi-1Ci-1Ci-1CiCiCiFAy0y1y2FAy3y4y5FAFACCSCi-1Ci-1Ci-1CiCiCiEE14114EE141-S04Multipliers Multipliers ——SummarySummary• Optimization Goals Different Vs Binary Adder• Once Again: Identify Critical Path• Other possible techniques- Data encoding (Booth)- PipeliningFIRST GLIMPSE AT SYSTEM LEVEL OPTIMIZATION- Logarithmic versus Linear (Wallace Tree Mult)EE1418EE14115EE141-S04The Binary ShifterThe Binary ShifterAiAi-1BiBi-1RightLeftnopBit-Slice i...EE14116EE141-S04The Barrel ShifterThe Barrel ShifterSh3Sh2Sh1Sh0Sh3Sh2Sh1A3A2A1A0B3B2B1B0: Control Wire: Data WireArea Dominated by WiringEE1419EE14117EE141-S044x4 barrel shifter4x4 barrel shifterBufferSh3Sh2Sh1Sh0A3A2A1A0Widthbarrel~ 2 pmMEE14118EE141-S04Logarithmic ShifterLogarithmic ShifterSh1 Sh1 Sh2 Sh2 Sh4 Sh4A3A2A1A0B1B0B2B3EE14110EE14119EE141-S04A3A2A1A0Out3Out2Out1Out000--7 bit Logarithmic Shifter7 bit Logarithmic ShifterEE14120EE141-S04PowerPowerEE14111EE14121EE141-S04The Power ChallengeThe Power Challenge 400 million computers in the world 0.16 PW (PetaWatt = 1015 W) of power dissipation Equivalent to 26 nuclear plants! Data centers represent the absolute challenge 1 single server rack is between 5 and 20 kW 100’s of those racks in a single room!EE14122EE141-S04PowerPower--andand--Energy ChallengesEnergy ChallengesCourtesy of IBMPower and energy management and minimizationhave emerged as some of the most dominant roadblocks. The best opportunity lies in a very aggressive scaling and adaptation of supply and threshold values in concert with a careful orchestration of the system activity. 138 W/cm2EE14112EE14123EE141-S04Portability:Portability:Battery storage the limiting factorBattery storage the limiting factor Little change in basic technology store energy using a chemical reaction Battery capacity doubles every 10 years Energy density/size, safe handling are limiting factorEnergy densityof materialKWH/kgGasoline 14Lead-Acid 0.04Li polymer 0.15EE14124EE141-S04Battery ProgressBattery Progress0204060801001201401601940 1950 1960 1970 1980 1990 2000 2010First Commercial UseEnergy Density(Wh/kg) Trend LineNiCdSLANiMHLi-IonReusableAlkalineLi-PolymerFacture 4 over the last 10 years!EE14113EE14125EE141-S04Power Dissipation in CMOSPower Dissipation in CMOS Dynamic power Charging capacitances Dominant today Leakage power Leaky transistors Concern in low-activity, portable devices Short circuit power Static power E.g. pseudo-NMOSEE14126EE141-S04Dynamic Power ConsumptionDynamic Power Consumption() ()∫∫∫====→DDVDDLoutLDDTTDDDDDDVCdvCVdttiVdttPE020010() ()∫∫∫====DDVDDLoutoutLTTLoutCCVCdvvCdttivdttPE020021VddVoutiLCLPMOSNETWORKNMOSA1ANNETWORK210 DDLVCE =→EE14114EE14127EE141-S04Dynamic Power ConsumptionDynamic Power Consumption One half of the power from the supply is consumed in the pull-up network and one half is stored on CL Charge from CLis dumped during the 1→0 transitionVddVoutiLCLPMOSNETWORKNMOSA1ANNETWORK210 DDLVCE =→221DDLRVCE =221DDLCVCE =EE14128EE141-S04Dynamic Power ConsumptionDynamic Power ConsumptionPower = Energy/transition • Transition rate= CLVDD2• f0→1= CLVDD2• f • P0→1= CswitchedVDD2• f Power dissipation is data dependent – depends on the switching probability Switched capacitance Cswitched= CL• P0→1EE14115EE14129EE141-S04Transition Activity and PowerTransition Activity and Power Energy consumed in N cycles, EN:EN= CL• VDD2• n0→1n0→1 – number of 0→1 transitions in N cyclesfVCNnfNEPDDLNNNavg⋅⋅⋅⎟⎠⎞⎜⎝⎛=⋅=→∞→∞→210limlimfNnN⋅=→∞→→1010limαfVCPDDLavg⋅⋅⋅=→210αEE14130EE141-S04“Dynamic” or timing dependent component ➟Type of Logic Function (NOR vs. XOR)“Static” component (does not account for timing)➟Circuit Topology➟Type of Logic Style (Static vs. Dynamic)➟Signal Statistics➟Inter-signal Correlations➟Signal Statistics and CorrelationsFactors Affecting Transition ActivityFactors Affecting Transition ActivityEE14116EE14131EE141-S04Type of Logic Function: NOR vs. XORType of Logic Function: NOR vs. XOR011001010100OutBAExample: Static 2-input NOR GateAssume signal probabilitiespA=1 = 1/2pB=1 = 1/2Then transition probabilityp0→1 = pOut=0 x pOut=1= 3/4 x 1/4 =


View Full Document

Berkeley ELENG 141 - Lecture 20 Multipliers Power

Documents in this Course
Adders

Adders

7 pages

Memory

Memory

33 pages

I/O

I/O

14 pages

Lecture 8

Lecture 8

34 pages

Lab 3

Lab 3

2 pages

I/O

I/O

17 pages

Project

Project

6 pages

Adders

Adders

15 pages

SRAM

SRAM

13 pages

Load more
Download Lecture 20 Multipliers Power
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 20 Multipliers Power and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 20 Multipliers Power 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?