DOC PREVIEW
Berkeley ELENG 141 - Lecture 5 MOS Transistor Model

This preview shows page 1-2-3-4-5 out of 14 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EE1411EE141EE141--Spring 2008Spring 2008Digital Integrated Digital Integrated CircuitsCircuitsCircuitsCircuitsLecture 5Lecture 5EE141EECS1411Lecture #5MOS Transistor ModelMOS Transistor ModelAnnouncementsAnnouncements Due to family emergency, Prof. Rabaey will be out of town this week and next. We 2/6 : NO lecture – moved to 2/19 Fr. 2/8:: Prof. Alon We 2/13: NO lecture – moved to 2/26 Fr 2/15: Simone Gambini Tu 2/19: Make up lecture (203 McLaughlin) Tu 2/26: Make up lecture (203 McLaughlin)EE141EECS1412Lecture #5p( g) Lab 2 this week! Lab 3 next week Homework #2 is due Fr.EE1412Class MaterialClass Material Last lecture Design Rules Started MOS modeling Today’s lecture MOS transistor modeling –Will see how to use these models to EE141EECS1413Lecture #5understand tradeoffs between CMOS gate delay, power, etc. Reading (3.3.1-3.3.2)MOS TransistorMOS TransistorLast lecture: what causes a transistor to turn on-conceptEE141EECS1414Lecture #5transistor to turn on concept of the threshold voltageEE1413DSGVGS+–Threshold Voltage: ConceptThreshold Voltage: Conceptn+p-substrateBDepletionregionn-channeln+EE141EECS1415Lecture #5B With positive gate bias, electrons pulled toward the gate With large enough bias, enough electrons will be pulled to "invert" the surface (p→n type) Voltage at which surface inverts: “magic” threshold voltage VTThe Threshold VoltageThe Threshold Voltage ThresholdDepletion charge2BTFB FQVCϕϕ=+ +iATFnNln⋅φ=φ Fermi potential()022TT FSB FVV Vγϕϕ=+⋅ + −oxCEE141EECS1416Lecture #52ΦFis approximately 0.6V for p-type substratesγ is the body factorVT0is approximately 0.45V for our processEE1414SVGSVDSTransistor with Gate and Drain BiasTransistor with Gate and Drain Biasn+n+DSGxLV(x)+–IDEE141EECS1417Lecture #5p-substrateBThe Drain CurrentThe Drain Current()iQx= Charge density:i Velocity:()nxυ=Current:EE141EECS1418Lecture #5DI=Current:EE1415Solving the Drain CurrentSolving the Drain Current Integrate along the channel:EE141EECS1419Lecture #5Plot of IPlot of I--V CurveV CurveEE141EECS14110Lecture #5 Is this really what happens?EE1416VGSTransistor in SaturationTransistor in Saturation0< VGS- VT< VDSn+n+SGDVDS> VGS- VTVGS - VT+-EE141EECS14111Lecture #5Pinch-offSaturationSaturation For (VGS– VT) < VDS, the effective drain voltage and current saturate:()22TGSnDVVLWkI −⋅⋅=’ Of course, real drain current isn’t totally independent of VDSFl fhllthdlti(),DS eff GS TVVV=−EE141EECS14112Lecture #5For example, approx. for channel-length modulation:()( )DSTGSnDVVVLWkI ⋅λ+⋅−⋅⋅= 122’EE1417Modes of OperationModes of OperationCutoff:VGS-VT< 00=DILinear (Resistive):VGS-VT> VDS()⎥⎥⎦⎤⎢⎢⎣⎡−⋅−⋅⋅=22DSDSTGSnDVVVVLWkI’EE141EECS14113Lecture #5Saturation:0 < VGS-VT< VDS()( )212nDGS T DSkWIVVVLλ=⋅⋅ − ⋅+⋅’6x 10-4VGS= 2.5 VCurrentCurrent--Voltage Relations:Voltage Relations:A Good Ol’ TransistorA Good Ol’ TransistorQuadraticRelationship2345VGS= 2.0 VV= 1 5 VResistive SaturationVDS= VGS-VTID(A)EE141EECS14114Lecture #50 0.5 1 1.5 2 2.501VGS= 1.5 VVGS= 1.0 VVDS(V)EE1418-42.5x 10V= 2 5 VEarlyCurrentCurrent--Voltage Relations:Voltage Relations:The Deep SubThe Deep Sub--Micron TransistorMicron TransistorLinearRelationship11.52VGS= 2.5 VVGS= 2.0 VVGS= 1.5 VySaturationID(A)EE141EECS14115Lecture #50 0.5 1 1.5 2 2.500.5VGS= 1.0 VVDS(V)Velocity SaturationVelocity Saturations) Velocity saturates due to carrier scattering effectsυn(m/sυsat= 105Constant velocityEE141EECS14116Lecture #5ξ (V/µm)Constant mobility (slope = µ)ξcEE1419Velocity SaturationVelocity SaturationIDLong-channel deviceLongchannel deviceShort-channel deviceVGS = VDDEE141EECS14117Lecture #5VDSVDSATVGS-VTIIDDversus Vversus VGSGS56x 10-42.5x 10-412345ID(A)0.511.52ID(A)quadraticlinearEE141EECS14118Lecture #50 0.5 1 1.5 2 2.50VGS(V)0 0.5 1 1.5 2 2.50VGS(V)quadraticLong Channel(L=2.5μm)Short Channel(L=0.25μm)EE14110Including Velocity SaturationIncluding Velocity SaturationApproximate velocity:pp yContinuity requires that: Integrating to find the current again:2csatnξυμ=EE141EECS14119Lecture #5gg gRegions of OperationRegions of Operation-422.5x 10VGS= 2.5 V56x 10-4VGS= 2.5 VResistiveVDSATVGS-VT00.511.52VGS= 2.0 VVGS= 1.5 VVGS= 1.0 V01234VGS= 2.0 VVGS= 1.5 VVGS= 1.0 VResistive SaturationVDS= VGS-VTID(A)ID(A)VelocitySaturationEE141EECS14120Lecture #50 0.5 1 1.5 2 2.500 0.5 1 1.5 2 2.50VDS(V) VDS(V)Long Channel(L=2.5μm)Short Channel(L=0.25μm)W/L=1.5EE14111Simplified Velocity SaturationSimplified Velocity Saturations) Assume velocity linear until hit υsatυn(m/sυsat= 105Constant velocityEE141EECS14121Lecture #5ξ (V/µm)ξc= υsat/μSimplified Velocity Saturation Simplified Velocity Saturation (cont’d)(cont’d) Assume VDSAT= ξcL when (VGS –VT) > ξcLV)VDSAT(VξcLActual VDSATEE141EECS14122Lecture #5VGS-VT(V)ξcLEE14112Simplified ModelSimplified Model-42.5x 10VV Define VGT= VGS–VT, VVSAT= ξc·L11.52VelocitySaturationID(A)LinearVDS= VVSATEE141EECS14123Lecture #50 0.5 1 1.5 2 2.500.5VDS(V)VDS= VGTVGT= VVSATSaturationA Unified Model for Manual AnalysisA Unified Model for Manual Analysisdefine VGT= VGS–VTDGIDS()2,'1DSeffVWIk VV Vλ⎛⎞+⎜⎟for VGT≤ 0: ID=0for VGT≥ 0:GTGSTEE141EECS14124Lecture #5B(),,'12ffDGT DS eff DSIk VV VLλ=⋅⋅ ⋅ − ⋅+⋅⎜⎟⎜⎟⎝⎠with VDS,eff= min (VGT, VDS, VVSAT)EE14113Simple Model versus SPICE Simple Model versus SPICE 2.5x 10-4VDS=VVSAT11.52ID(A)EE141EECS14125Lecture #50 0.5 1 1.5 2 2.500.5VDS(V)VDS=VGTTransistor Model for Manual AnalysisTransistor Model for Manual AnalysisVEE141EECS14126Lecture #5Textbook: page 103EE14114A PMOS TransistorA PMOS Transistor0x 10-4•All variables negativeVGS = -1.0V-0.6-0.4-0.2ID(A)All variables negative• I prefer to work with absolute valuesVGS = -1.5VVGS = -2.0VEE141EECS14127Lecture #5-2.5 -2 -1.5 -1 -0.5 0-1-0.8VDS(V)VGS = -2.5VNext LectureNext Lecture Using the MOS model: Inverter VTC and delayEE141EECS14128Lecture


View Full Document

Berkeley ELENG 141 - Lecture 5 MOS Transistor Model

Documents in this Course
Adders

Adders

7 pages

Memory

Memory

33 pages

I/O

I/O

14 pages

Lecture 8

Lecture 8

34 pages

Lab 3

Lab 3

2 pages

I/O

I/O

17 pages

Project

Project

6 pages

Adders

Adders

15 pages

SRAM

SRAM

13 pages

Load more
Download Lecture 5 MOS Transistor Model
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 5 MOS Transistor Model and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 5 MOS Transistor Model 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?