DOC PREVIEW
Berkeley COMPSCI 61C - Lecture 13

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

inst.eecs.berkeley.edu/~cs61c !UCB$CS61C$:$Machine$Structures$$Lecture$13$MIPS$Instruction$Representation$I$$2008‐02‐22$The$National$Science$Foundation$(NSF)$requested$$20$million$to$start$the$“Science$and$Engineering$Beyond$Moore’s$Law”$effort,$to$fund$academic$research$in$carbon$nanotubes,$quantum$computing,$massively$multicore$computers,$etc.$(that$could$improve$and$replace$current$transistor$technology).$That’s$great$for$Cal$–$leaders$in$these!$$$$$Lecturer$SOE$Dan$Garcia$www.pcworld.com/article/id,142561-page,1/article.htmlCS61C$L12$MIPS$Instruction$Representation$I$(3)$Garcia,$Spring$2008$©$UCB$High Level Language Program (e.g., C)!Assembly Language Program (e.g.,MIPS)!Machine Language Program (MIPS)!Hardware Architecture Description (e.g., block diagrams) !Compiler!Assembler!Machine Interpretation! temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; lw $t0, 0($s2) lw $t1, 4($s2) sw $t1, 0($s2) sw $t0, 4($s2) 0000 1001 1100 0110 1010 1111 0101 1000 1010 1111 0101 1000 0000 1001 1100 0110 1100 0110 1010 1111 0101 1000 0000 1001 0101 1000 0000 1001 1100 0110 1010 1111 !Logic Circuit Description (Circuit Schematic Diagrams)!Architecture Implementation!Register File!ALU!61C$Levels$of$Representation$(abstractions)$CS61C$L12$MIPS$Instruction$Representation$I$(4)$Garcia,$Spring$2008$©$UCB$Overview$–$Instruction$Representation$ Big$idea:$stored$program$ $consequences$of$stored$program$ Instructions$as$numbers$ Instruction$encoding$$ MIPS$instruction$format$for$Add$instructions$ MIPS$instruction$format$for$Immediate,$Data$transfer$instructions$CS61C$L12$MIPS$Instruction$Representation$I$(5)$Garcia,$Spring$2008$©$UCB$Big$Idea:$Stored‐Program$Concept$ Computers$built$on$2$key$principles:$ Instructions$are$represented$as$bit$patterns$‐$can$think$of$these$as$numbers.$ Therefore,$entire$programs$can$be$stored$in$memory$to$be$read$or$written$just$like$data.$ Simplifies$SW/HW$of$computer$systems:$$ Memory$technology$for$data$also$used$for$programs$CS61C$L12$MIPS$Instruction$Representation$I$(6)$Garcia,$Spring$2008$©$UCB$Consequence$#1:$Everything$Addressed$ Since$all$instructions$and$data$are$stored$in$memory,$everything$has$a$memory$address:$instructions,$data$words$ both$branches$and$jumps$use$these$ C$pointers$are$just$memory$addresses:$they$can$point$to$anything$in$memory$ Unconstrained$use$of$addresses$can$lead$to$nasty$bugs;$up$to$you$in$C;$limits$in$Java$ One$register$keeps$address$of$instruction$being$executed:$“Program$Counter”$(PC)$ Basically$a$pointer$to$memory:$Intel$calls$it$Instruction$Address$Pointer,$a$better$name$CS61C$L12$MIPS$Instruction$Representation$I$(7)$Garcia,$Spring$2008$©$UCB$Consequence$#2:$Binary$Compatibility$ Programs$are$distributed$in$binary$form$ Programs$bound$to$specific$instruction$set$ Different$version$for$Macintoshes$and$PCs$ New$machines$want$to$run$old$programs$(“binaries”)$as$well$as$programs$compiled$to$new$instructions$ Leads$to$“backward$compatible”$instruction$set$evolving$over$time$ Selection$of$Intel$8086$in$1981$for$1st$IBM$PC$is$major$reason$latest$PCs$still$use$80x86$instruction$set$(Pentium$4);$could$still$run$program$from$1981$PC$today$CS61C$L12$MIPS$Instruction$Representation$I$(8)$Garcia,$Spring$2008$©$UCB$Instructions$as$Numbers$(1/2)$ Currently$all$data$we$work$with$is$in$words$(32‐bit$blocks):$ Each$register$is$a$word.$ lw$and$sw$both$access$memory$one$word$at$a$time.$ So$how$do$we$represent$instructions?$ Remember:$Computer$only$understands$1s$and$0s,$so$“add $t0,$0,$0”$is$meaningless.$ MIPS$wants$simplicity:$since$data$is$in$words,$make$instructions$be$words$too$CS61C$L12$MIPS$Instruction$Representation$I$(9)$Garcia,$Spring$2008$©$UCB$Instructions$as$Numbers$(2/2)$ One$word$is$32$bits,$so$divide$instruction$word$into$“fields”.$ Each$field$tells$processor$something$about$instruction.$ We$could$define$different$fields$for$each$instruction,$but$MIPS$is$based$on$simplicity,$so$define$3$basic$types$of$instruction$formats:$ R‐format$ I‐format$ J‐format$CS61C$L12$MIPS$Instruction$Representation$I$(10)$Garcia,$Spring$2008$©$UCB$Instruction$Formats$ I‐format:$used$for$instructions$with$immediates,$lw$and$sw$(since$offset$counts$as$an$immediate),$and$branches$(beq$and$bne),$$ (but$not$the$shift$instructions;$later)$ J‐format:$used$for$j$and$jal$$ R‐format:$used$for$all$other$instructions$ It$will$soon$become$clear$why$the$instructions$have$been$partitioned$in$this$way.$CS61C$L12$MIPS$Instruction$Representation$I$(11)$Garcia,$Spring$2008$©$UCB$R‐Format$Instructions$(1/5)$ Define$“fields”$of$the$following$number$of$bits$each:$6$+$5$+$5$+$5$+$5$+$6$=$32$ For$simplicity,$each$field$has$a$name:$ Important:$On$these$slides$and$in$book,$each$field$is$viewed$as$a$5‐$or$6‐bit$unsigned$integer,$not$as$part$of$a$32‐bit$integer.$ Consequence:$5‐bit$fields$can$represent$any$number$0‐31,$while$6‐bit$fields$can$represent$any$number$0‐63.$6! 5! 5! 5! 6!5!opcode! rs! rt! rd! funct!shamt!CS61C$L12$MIPS$Instruction$Representation$I$(12)$Garcia,$Spring$2008$©$UCB$R‐Format$Instructions$(2/5)$ What$do$these$field$integer$values$tell$us?$ opcode:$partially$specifies$what$instruction$it$is$$ Note:$This$number$is$equal$to$0$for$all$R‐Format$instructions.$ funct:$combined$with$opcode,$this$number$exactly$specifies$the$instruction$ Question:$Why$aren’t$opcode$and$funct$a$single$12‐bit$field?$ We’ll$answer$this$later.$CS61C$L12$MIPS$Instruction$Representation$I$(13)$Garcia,$Spring$2008$©$UCB$ More$fields:$ rs$(Source$Register):$generally$used$to$specify$register$containing$first$operand$ rt$(Target$Register):$generally$used$to$specify$register$containing$second$operand$(note$that$name$is$misleading)$ rd$(Destination$Register):$generally$used$to$specify$register$which$will$receive$result$of$computation$R‐Format$Instructions$(3/5)$CS61C$L12$MIPS$Instruction$Representation$I$(14)$Garcia,$Spring$2008$©$UCB$ Notes$about$register$fields:$


View Full Document

Berkeley COMPSCI 61C - Lecture 13

Documents in this Course
SIMD II

SIMD II

8 pages

Midterm

Midterm

7 pages

Lecture 7

Lecture 7

31 pages

Caches

Caches

7 pages

Lecture 9

Lecture 9

24 pages

Lecture 1

Lecture 1

28 pages

Lecture 2

Lecture 2

25 pages

VM II

VM II

4 pages

Midterm

Midterm

10 pages

Load more
Download Lecture 13
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 13 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 13 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?