DOC PREVIEW
Berkeley ELENG 105 - Lecture 11: MOS Transistor

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Lecture 11: MOS TransistorLecture OutlineMOS CapacitorAccumulation: VGB < VFBDepletion: VFB<VGB < VTInversionThreshold VoltageInversion Stops DepletionQ-V Curve for MOS CapacitorNumerical ExampleNum Example: Electric Field in OxideNumerical Example: Depletion RegionMOS CV CurveC-V Curve Equivalent CircuitsMOSFET Cross SectionMOSFET LayoutPMOS & NMOSCMOSCircuit SymbolsObserved Behavior: ID-VGSObserved Behavior: ID-VDS“Linear” Region CurrentMOSFET “Linear” RegionMOSFET: Variable ResistorDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11Lecture 11: MOS TransistorProf. NiknejadDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadLecture OutlineReview: MOS Capacitors RegionsMOS Capacitors (3.8 − 3.9)–CV Curve–Threshold VoltageMOS Transistors (4.1 − 4.3):–Overview–Cross-section and layout –I-V CurveDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadMOS CapacitorMOS = Metal Oxide SiliconSandwich of conductors separated by an insulator “Metal” is more commonly a heavily doped polysilicon layer n+ or p+ layerNMOS  p-type substrate, PMOS  n-type substrateOxide (SiO2)Body (p-type substrate)Gate (n+ poly)011.7se e=03.9oxe e=Very Thin!~ 1nmoxtx0Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadAccumulation: VGB < VFBEssentially a parallel plate capacitorCapacitance is determined by oxide thickness:( )G ox GB FBQ C V V= -Body (p-type substrate)−+GB FBV V<++++++++++++++++++−−−−−−−−−−−−−−−−−−B GQ Q=( )xr( )xfDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadDepletion: VFB<VGB < VTPositive charge on gate terminates on negative charges in depletion regionPotential drop across the oxide and depletion regionCharge has a square-root dependence on applied biasBody (p-type substrate)+−GB FBV V>+ + + + + + + + + +( )B a d GBQ qN X V=-− − − − − − − − −− − − − − − − −( )G GB BQ V Q=-oxt( )xr( )xfDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadInversionThe surface potential increases to a point where the electron density at the surface equals the background ion densityAt this point, the depletion region stops growing and the extra charge is provided by the inversion charge at surfacesqkTs i an n e Nf= =Body (p-type substrate)+ + + + + + + + + ++−GB TV V=− − − − − − − − −− − − − − − − −sfoxtdepx( )xr( )xfDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadThreshold VoltageThe threshold voltage is defined as the gate-body voltage that causes the surface to change from p-type to n-typeFor this condition, the surface potential has to equal the negative of the p-type potentialApply KCL around loop:Gate (n+ poly)GS FB ox BSV V V V= + +12 2 ( 2 )Tn FB p s a poxV V q NCf e f= - + -oxV+-BSV+-+−GB TV V=− − − − − −2s BS pVf = =-sox ox ox ox soxV E t t Eee= =2 ( 2 )2a dep a pa ss ss s a sqN x qNqNEqNfefe e e-= = =Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadInversion Stops DepletionA simple approximation is to assume that once inversion happens, the depletion region stops growingThis is a good assumption since the inversion charge is an exponential function of the surface potentialUnder this condition:,max( )G Tn BQ V Q�-,max( ) ( )G GB ox GB Tn BQ V C V V Q= - -Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadQ-V Curve for MOS CapacitorIn accumulation, the charge is simply proportional to the applies gate-body biasIn inversion, the same is trueIn depletion, the charge grows slower since the voltage is applied over a depletion regionGQ( )GBV VTnVFBVinversionaccumulationdepletion,maxBQ-( )N GBQ V-Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadNumerical ExampleMOS Capacitor with p-type substrate:Calculate flat-band:Calculate threshold voltage:20nmoxt =16 35 10 cmaN-= �( ) (550 ( 402)) 0.95VFB pnV f+=- - =- - - =-12 2 ( 2 )Tn FB p s a poxV V q NCf e f= - + -13-63.45 10 F/cm2 10 cmoxoxoxCte-�= =�19 12 162 1.6 10 1.04 10 5 10 2 0.4.95 2( 0.4) 0.52VTnoxVC- -� � � � � � � �=- - - + =Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadNum Example: Electric Field in OxideApply a gate-to-body voltage:Device is in accumulationThe entire voltage drop is across the oxide:The charge in the substrate (body) consist of holes:2.5GB FBV V=- <562.5 0.55 ( 0.4) V8 102 10 cmGB pox noxox oxVVEt tf+-+ -- + - -= = = =- ��7 2( ) 2.67 10 C/cmB ox GB FBQ C V V-=- - = �Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadNumerical Example: Depletion RegionIn inversion, what’s the depletion region width and charge?,max2 0.8VB s p p p pV f f f= - =- - =- =2,max ,max12aB dsqNV Xe� �=� �� �,max,max2144nms BdaVXqNe= =7 2,max ,max1.15 10 C/cmB a dQ qN X-=- =- �Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadMOS CV CurveSmall-signal capacitance is slope of Q-V curveCapacitance is linear in accumulation and inversionCapacitance is depletion region is smallestCapacitance is non-linear in depletionGQ( )GBV VTnVFBV,maxBQ-( )N GBQ V-CGBVoxCoxCTnVFBVDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadC-V Curve Equivalent CircuitsIn accumulation mode the capacitance is just due to the voltage drop across toxIn inversion the incremental charge comes from the inversion layer (depletion region stops growing). In depletion region, the voltage drop is across the oxide and the depletion regionoxCoxCoxCdepCsdepdepCxe=11dep oxox oxtotdep s oxdep oxox depoxC CC CCC tC CxCee= = =+++Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 11 Prof. A. NiknejadMOSFET Cross SectionAdd two junctions around MOS capacitorThe regions forms PN junctions with substrateMOSFET is a four terminal


View Full Document

Berkeley ELENG 105 - Lecture 11: MOS Transistor

Documents in this Course
Lecture 3

Lecture 3

21 pages

Lecture 9

Lecture 9

15 pages

Lecture 3

Lecture 3

19 pages

Lecture 3

Lecture 3

22 pages

Outline

Outline

16 pages

Lecture 3

Lecture 3

21 pages

Lecture 2

Lecture 2

28 pages

Lecture 3

Lecture 3

21 pages

Lecture 4

Lecture 4

22 pages

Lecture 6

Lecture 6

25 pages

Lecture 1

Lecture 1

13 pages

Lecture 5

Lecture 5

22 pages

Lecture 3

Lecture 3

21 pages

Lecture 1

Lecture 1

13 pages

Lecture 8

Lecture 8

25 pages

Lecture

Lecture

5 pages

Overview

Overview

24 pages

Lecture 5

Lecture 5

22 pages

Load more
Download Lecture 11: MOS Transistor
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 11: MOS Transistor and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 11: MOS Transistor 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?