DOC PREVIEW
Berkeley ELENG 105 - Lecture 10

This preview shows page 1-2-3-4 out of 11 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

R. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleyLecture 10• Last time:– MOS Sample and Hold Circuit: linear and non-linear analysis• Today :– Introduction to amplifiers: a common-source MOS stageR. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleyAn MOS AmplifierDictionary definition:amplify =R. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleySweep Input Voltage vIN-VSUP+VSUP-VSUP+ VTnMOSFET is saturated Æhigh slopeMOSFET is triode Ælow slopevIN= vG–(-VSUP)_-VSUPR. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleySelecting the Output Bias PointVBIASis selected so that VOUTis centered between +VSUPand –VSUP(why?)VOUT= 0 V ... NOT vOUT= 0 V!Constraint on the DC drain current: IRD= (VSUP- VOUT) / RD= VSUP / RDIRD= ID = ID,SAT... verify that MOSFET is saturated after finding VBIASR. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleyFinding the Input Bias VoltageHand calculation: use ID,SAT2,)()2/(TnGSoxnSATDVVCLWI −=µTypical numbers: W = 40 µm, L = 2 µm, RD= 25 k ΩµnCox= 100 µA/V2, VTn= 1 V, VSUP= 2.5 V==DSUPRDRVI2,)1(10010 −⋅⋅=GSSATDVIR. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleyApplying the Small-Signal VoltagevINVBIASvs+=vst() vˆsωt()cos=Approach 1. Just use vINin the equation for the total drain current iDand find vOUTvOUTVSUPRDiD– VSUPRDµnCox()W2L------VGSvsVTn–+()2–≅=][)(SUPsBIASSUPINGSVvVVvv++=−−=Result:R. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleySolving for the Output Voltage vOUTvOUTVSUPRDµnCox()W2L------VGSVTn–()21vsVGSVTn–()------------------------------+2–=IDvOUTVSUPRDID1vsVGSVTn–()------------------------------+2–=VSUPR. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleySmall-Signal CaseExpand (1 + x)2= 1 + 2x + x2 … last term can be dropped when x << 11vsVGSVTn–--------------------------+212vsVGSVTn–--------------------------vsVGSVTn–--------------------------2++=Linearize the output voltage for the s.s. caseR. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleyLinearized Output VoltageFor this case, the total output voltage is vOUTVSUPRDID12vsVGSVTn–()------------------------------+–≅ VSUPVSUP–2RDIDvsVGSVTn–()------------------------------–=The average output voltage VOUT= 0 V so the total output voltage is the small-signal voltage in this special case:vOUTvout2RDIDVGSVTn–()------------------------------ vs–2VSUPVGSVTn–()------------------------------ vs– Avvs== = =R. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleyPlot of Output WaveformNumbers: 2 IDRD / (VGS– VTn) = (2 x 2.5) / 0.31 = 16.1R. T. HoweEECS 105 Spring 2005 Lecture 10Dept. of EECSUniversity of California, BerkeleyIs there a Better Way?What’s missing: no inclusion of fudge factor term or of charge storage effectsApproach 2. Do problem in two steps.1. DC voltages and currents (ignore small signals sources):set bias point of the MOSFET ... we had to do this to pick VBIASalready2. Substitute the small-signal model of the MOSFET andthe small-signal models of the other circuit elements


View Full Document

Berkeley ELENG 105 - Lecture 10

Documents in this Course
Lecture 3

Lecture 3

21 pages

Lecture 9

Lecture 9

15 pages

Lecture 3

Lecture 3

19 pages

Lecture 3

Lecture 3

22 pages

Outline

Outline

16 pages

Lecture 3

Lecture 3

21 pages

Lecture 2

Lecture 2

28 pages

Lecture 3

Lecture 3

21 pages

Lecture 4

Lecture 4

22 pages

Lecture 6

Lecture 6

25 pages

Lecture 1

Lecture 1

13 pages

Lecture 5

Lecture 5

22 pages

Lecture 3

Lecture 3

21 pages

Lecture 1

Lecture 1

13 pages

Lecture 8

Lecture 8

25 pages

Lecture

Lecture

5 pages

Overview

Overview

24 pages

Lecture 5

Lecture 5

22 pages

Load more
Download Lecture 10
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 10 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 10 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?