DOC PREVIEW
Berkeley ELENG 105 - Lecture 18: Bipolar Single Stage Amplifiers

This preview shows page 1-2-3-4-5-6 out of 19 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Lecture 18: Bipolar Single Stage AmplifiersLecture OutlineBipolar AmplifiersSmall-Signal Two-Port ModelCommon-Base AmplifierCB Input ResistanceCB Output ResistanceOutput Impedance DetailsOutput Impedance CalculationCommon-Base Two-Port ModelCommon-Collector AmplifierCommon-Collector Input ResistanceCommon-Collector Output ResistanceCommon-Collector Output Res. (cont)Common-Collector Voltage GainCommon-Collector Two-Port ModelSlide 17Typical “Discrete” BiasingGain for “Discrete” DesignDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18Lecture 18: Bipolar Single Stage AmplifiersProf. NiknejadDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadLecture OutlineBJT AmpsBJT BiasingCommon Emitter AmpCommon Base AmpCommon Collector Amp –AKA Emitter Followerβ Multiplier ConceptEmitter DegenerationDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadBipolar AmplifiersCommon-emitter amplifier: Biasing: adjustVBIAS = VBE sothat IC = ISUP.Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadSmall-Signal Two-Port ModelParameters: (IC = 1 mA, β =100, VA = 3V)oc3V|| || 3k||r 3k1mAout o oc ocR r r r= = = �25mV100 2.5k1mAinmR rgpb= = = = W1mA 1S 40mS25mV 25m mG g= = = =Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Base AmplifierTo find IBIAS, note that IBIAS = IE = - (1/F)ICCommon-base currentgain Ai = - FDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCB Input ResistanceSumming currents at the input node:( ) 0t m o t ovi g v v v grppp+ + + - =small1t m ti g vrp� �= +� �� �111 1t min m mt mv gR g gi r gpb--� �� �= = + = + �� �� �� �� �25mV251mA= = WDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCB Output Resistancenotepolarityput roc back inafter finding vt / itSame topology as CG amplifier, but with r || RS rather than RS( )|| 1 ( ||out oc o m SR r r g r Rp� �= +� �( )|| 1out oc o mR r r g rp� �= +� �SR rp>>( )|| 1out oc oR r r b= +Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadOutput Impedance DetailsFirst draw small signal equivalent circuit with transistor and simplify as much as possibleThen (if needed) add the small signal equivalent circuitIf frequency is low, get rid of caps!Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadOutput Impedance Calculationtv+-tirpvp+-SRmg vpor( )tt mov vi g vrpp- -= +( || )t Sv i R rp p=-||( || )t St m t S to ov R ri g i R r ir rpp-=- + +||1 ( || )S tt m So oR r vi g R rr rpp� �+ + =� �� �Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Base Two-Port ModelWhy did we consider it a current amp?Current Amp :•Unity Current Gain (-1)•Small Input Impedance•Large (huge!) Output ImpedanceDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Collector AmplifierDC Bias:output is one“VBE drop” downfrom input“Emitter Follower”Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Collector Input Resistance( 1) ( || || )t t t L o ocv i r i R r rpb= + +( 1)( || || )in L o ocR r R r rpb= + +( 1)in LR r Rpb� + +Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Collector Output ResistanceDivider between vt and v :1 1( || ) 0t m t o oci g v v r v r rp p p- -+ + - =tSrv vr Rppp=+( )1 1( || )t t m t o ocSri v g r v r rr Rppp- -� �= + +� �+� �Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Collector Output Res. (cont)Looking into base of emitter follower: load impedance larger by factor β+1Looking into emitter of follower: “source” impedance smaller by factor β+1( )1 1( || )t t m t o ocSri v g r v r rr Rppp- -� �= + +� �+� �( )11t t mSi v g rr Rpp� �= +� �+� �1t Souttv r RRipb+= =+Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Collector Voltage GainKCL at the output node: note v = vt - vout( )11||out oc o mv r r g v v rp p p--= +( ) ( )11|| ( )out oc o m t outv r r g r v vp--= + -( )()( )11 1||out oc o m m tv r r g r g r vp p-- -+ + = +out tv v=Department of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadCommon-Collector Two-Port Modeltypo: RLVoltage Amp :•Unity Voltage Gain (+1)•Large Input Impedance•Small Output ImpedanceDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadSummary of Two-Port ParametersDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadTypical “Discrete” BiasingA good biasing scheme must be relatively insensitive to transistor parameters (vary with process and temperature)In this scheme, the base current is given by:The emitter current:11 2B CCRV VR R=+1,1 2/E CC BE on ERI V V RR R� �� -� �+� �1R2RCRERCCVDepartment of EECS University of California, BerkeleyEECS 105 Fall 2003, Lecture 18 Prof. A. NiknejadGain for “Discrete” DesignLet’s derive it by intuitionInput impedance can be made large enough by designDevice acts like follower, emitter=baseThis signal generates a collector current1R2RCRERsv( 1)( )( 1)in EER r RRpbb� + +� +2 1 2( 1) || ||in ER R R Rb� +Can be made large to coupleAll of source to input (even with RS)~sv/s Ev R~ /s C Ev R


View Full Document

Berkeley ELENG 105 - Lecture 18: Bipolar Single Stage Amplifiers

Documents in this Course
Lecture 3

Lecture 3

21 pages

Lecture 9

Lecture 9

15 pages

Lecture 3

Lecture 3

19 pages

Lecture 3

Lecture 3

22 pages

Outline

Outline

16 pages

Lecture 3

Lecture 3

21 pages

Lecture 2

Lecture 2

28 pages

Lecture 3

Lecture 3

21 pages

Lecture 4

Lecture 4

22 pages

Lecture 6

Lecture 6

25 pages

Lecture 1

Lecture 1

13 pages

Lecture 5

Lecture 5

22 pages

Lecture 3

Lecture 3

21 pages

Lecture 1

Lecture 1

13 pages

Lecture 8

Lecture 8

25 pages

Lecture

Lecture

5 pages

Overview

Overview

24 pages

Lecture 5

Lecture 5

22 pages

Load more
Download Lecture 18: Bipolar Single Stage Amplifiers
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 18: Bipolar Single Stage Amplifiers and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 18: Bipolar Single Stage Amplifiers 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?