DOC PREVIEW
Berkeley ELENG 247A - Lecture 20

This preview shows page 1-2-22-23 out of 23 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EECS 247 Lecture 20: Data Converters © 2005 H.K. Page 1EE247Lecture 20• ADC Converters– ADC architectures (continued)– Comparator architectures• Latched comparators• Latched comparators incorporating preamplifier• Sample-data comparators– Offset cancellation– Comparator architecture examples– Flash ADC sources of error• Sparkle code• Meta-stabilityEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 2Flash Converter• B-bit flash ADC:– DAC generates all possible 2B-1 levels–2B-1 comparators compare VINto DAC outputs– Comparator output:• If VDAC< VINÆ 0• If VDAC> VINÆ1– Comparator outputs form thermometer code– Encoder converts thermometer to binary codeDigitalOutputVINVREFfsDAC2B-1ÆBEncoderEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 3Flash ADC ConverterExample: 3-bit ConversionEncoderfsThermometer codeB-bitsTimeVREF0011111101VINVINVREFEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 4Flash Converter• Very fast: only 1 clock cycle per conversion– Half cycleÆ VIN & VDAC comparison– Half cycleÆ 2B-1 to B encoding• High complexity: 2B-1 comparators• High capacitance @ input nodeThermometer codeB-bits R/2RRRR/2REncoderDigitalOutputfs.....VINVREFEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 5Folding Converter• Significantly fewer comparators than flash •Fast• Nonidealities in folder limit resolution to ~10-bitsLSBADCMSBADCFolding CircuitVINDigitalOutputEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 6Time Interleaved Converter• Extremely fast:Limited by speed of T/H• Accuracy limited by mismatch in individual ADCs (timing, offset, gain, …)T/H4fsADCfsADC+ T/4ADC+ 2T/4ADC+ 3T/4Serial / Parallel ConversionVINDigital OutputfsfsfsEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 7Residue Type ADC• Quantization error output (“residuum”) enables cascading for higher resolution• Great flexibility for stages: flash, oversampling ADC, …• Optional T/H enables parallelism (pipelining)• Fast: one clock per conversion (with T/H), latencyT/H & Gain(optional)coarse ADC(1 ... 6 Bit)Partial Digital OutputVINErrorDACEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 8Pipelined ADC• Approaches speed of flash, but much lower complexity• One clock per conversion, but K clocks latency• Efficient digital calibration possible• Versatile: from 16Bits / 1MS/s to 14Bits / 100MS/sDigital Correction LogicStage 1B1BitsStage 2B2BitsStage KBkBitsDigital outputup to (B1+ B2+ ... + Bk))BitsVINEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 9Algorithmic ADC• Essentially same as pipeline, but a single stage is used for all partial conversions• K clocks per conversionT/HcoarseADC(1 ... 6 Bit)Digital OutputVINResidueDACShift Register& Correction LogicStartof conversion2BEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 10Oversampled ADC• Hard to comprehend … “easy” to build• Input is oversampled (M times faster than output rate)• Reduces Anti-Aliasing filter requirements and capacitor size• Accuracy independent of component matching• Very high resolution achievable (> 20 Bits)H(z)DigitalDecimationFilterDACVINDigitalOutputfsfs/MEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 11Throughput Rate Comparison100101102103104105024681012141618Clock Cycles per ConversionResolution [Bit]Flash, Pipeline~1 to 2Successive Approximation~B2ndOrder 1-Bit Oversampled ~2(0.4B+1)Serial ~2BEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 12Speed-Resolution Map[www.v-corp.com]EECS 247 Lecture 20: Data Converters © 2005 H.K. Page 13High-Speed A/D Converters• Flash Converter– Comparator design considerations– Binary Encoder• Interpolation• Folding• Pipelined ADCsEECS 247 Lecture 20: Data Converters © 2005 H.K. Page 14Flash Converter• Very fast: only 1 clock cycle per conversion• High complexity: 2B-1 comparators• High input capacitanceR/2RRRR/2REncoderDigitalOutputVINVREFfs.....EECS 247 Lecture 20: Data Converters © 2005 H.K. Page 15Flash ConverterExample: 8-bits ADC•8-bitsÆ 255 comparators•VREF=1V Æ 1LSB=4mV• DNL<1/2LSB ÆComparator input referred offset < 2mV•2mV =6σoffsetÆ σoffset< 0.33mVR/2RRRR/2REncoderDigitalOutputVINVREFfs.....EECS 247 Lecture 20: Data Converters © 2005 H.K. Page 16Flash ADC ConverterExample: 8-bits ADC (continued)Æ1σOffset< 0.33mV• Let us assume in the technology used:– Voffset-per-unit-sqrt(WxL)=5mV– Issues:• Si area quite large• Large input capacitance• Since depending on input voltage different number of comparator input transistors would be on/off- input capacitance varies as input variesÆ Nonlinear input capacitance could give rise to signal distortion20250.33 2302Assuming: 5 / 7653Total input capacitance: 255 0.765 195 !ffsetox GS oxmVVmVWLWLCfF C CWL fFpFμμ== →×=×=→=×=→×=Ref: M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433 - 1439, October 1989.EECS 247 Lecture 20: Data Converters © 2005 H.K. Page 17Flash ADC ConverterExample (continued)Trade-offs:– Allowing larger DNL of 1LSB instead of 0.5LSB:• Increases the maximum allowable input-referred offset voltage by a factor of 2• Decreases the required device WxL by a factor of 4• Reduces the input device area by a factor of 4• Reduces the input capacitance by a factor of 4!– Reducing the ADC resolution by 1-bit• Increases the maximum allowable input-referred offset voltage by a factor of 2• Decreases the required device WxL by a factor of 4• Reduces the input device area by a factor of 4• Reduce the input capacitance by a factor of 4EECS 247 Lecture 20: Data Converters © 2005 H.K. Page 18Flash ConverterComparator Maximum Offset versus ADC Resolution10-111010246810VREF=1VVREF=2VAssumption: DNL=0.5LSBNote:Depending on min acceptable yield, numbers associated with 2σ to 7σ offset voltageADC ResolutionMaximum Comparator Voffset[mV]EECS 247 Lecture 20: Data Converters © 2005 H.K. Page 19Voltage ComparatorsFunction: compare the instantaneous value of two analog signalsImportant features:• Maximum clock rate fs Æ settling time, slew rate, small signal bandwidth• ResolutionÆ gain, offset• Overdrive recovery• Input capacitance (and linearity of input capacitance!)• Power dissipation• Common-mode rejection• Kickback noise•…+Vin-+-Vout (Digital


View Full Document

Berkeley ELENG 247A - Lecture 20

Documents in this Course
Lecture 8

Lecture 8

29 pages

Lecture 8

Lecture 8

35 pages

Lecture 8

Lecture 8

31 pages

Lecture 9

Lecture 9

36 pages

Lecture 7

Lecture 7

34 pages

Load more
Download Lecture 20
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 20 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 20 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?