DOC PREVIEW
Berkeley ELENG 143 - Section 6 - Ion Implantation

This preview shows page 1-2-16-17-18-34-35 out of 35 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Section 6: Ion ImplantationIon Implantation - OverviewEquipmentIon ImplantationAdvantages of Ion ImplantationIon Implantation Energy Loss MechanismsIon Energy Loss CharacteristicsStopping MechanismsElectronic / Nuclear Stopping: DamageSimulation of 50keV Boron implanted into SiModel for blanket implantationProjected Range and StraggleSelective ImplantationTransverse (or Lateral) Straggle (Rt or  R)Feature Enlargement due to lateral straggleDefinitions of Profile ParametersSelective Implantation – Mask thicknessTransmission Factor of Implantation MaskTransmitted FractionJunction DepthSheet Resistance RS of Implanted LayersApproximate Value for RSExample CalculationsChannelingUse of tilt to reduce channelingPrevention of Channeling by Pre-amorphizationKinetic Energy of Multiply Charged IonsMolecular Ion ImplantationImplantation DamageAmount and type of Crystalline DamagePost-Implantation Annealing SummaryDeviation from Gaussian TheoryShallow ImplantationRapid Thermal AnnealingDose-Energy Application SpaceEE143 – Ali JaveySection 6: Ion ImplantationJaeger Chapter 5EE143 – Ali JaveyIon Implantation - Overview•Wafer is Target in High Energy Accelerator•Impurities “Shot” into Wafer•Preferred Method of Adding Impurities to Wafers–Wide Range of Impurity Species (Almost Anything)–Tight Dose Control (A few % vs. 20-30% for high temperature pre-deposition processes)–Low Temperature Process•Expensive Systems•Vacuum SystemEE143 – Ali JaveyEquipment  dttImqAQqrmVT021 Dose Implanted2 Field Magnetic x q particle chargedon ForceBBvFEE143 – Ali JaveyIon ImplantationxBlocking maskSi+C(x)as-implant depth profileDepth xEqual-ConcentrationcontoursReminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.yEE143 – Ali JaveyAdvantages of Ion Implantation•Precise control of dose and depth profile•Low-temp. process (can use photoresist as mask)•Wide selection of masking materials e.g. photoresist, oxide, poly-Si, metal•Less sensitive to surface cleaning procedures•Excellent lateral uniformity (< 1% variation across 12” wafer)n+n+Application example: self-aligned MOSFET source/drain regionsSiO2p-SiAs+As+As+Poly Si GateEE143 – Ali JaveyIon Implantation Energy Loss MechanismsSi++SiSiee++ElectronicstoppingNuclearstoppingCrystalline Si substrate damaged by collisionElectronic excitation creates heatEE143 – Ali JaveyLight ions/at higher energy more electronic stoppingHeavier ions/at lower energy more nuclear stoppingEXAMPLES Implanting into Si:Ion Energy Loss CharacteristicsH+B+As+Electronic stoppingdominatesElectronic stoppingdominatesNuclear stoppingdominatesEE143 – Ali JaveyStopping MechanismsEE143 – Ali JaveySubstrateLess damageSe > SnMore damage at end of range Sn > SeSurfacex ~ RpA+Eo = incidentkineticenergySeE ~ 0SnE=EoSeSnDepth xSn  dE/dx|nSe  dE/dx|eElectronic / Nuclear Stopping: DamageEE143 – Ali JaveySimulation of 50keV Boron implanted into SiEE143 – Ali JaveyModel for blanket implantation   ppppppRNdxxNQRRRxNxN0p222= DoseStraggleRRange Projected2exp ProfileGaussian EE143 – Ali JaveyRp and Rp values are given in tables or charts e.g. see pp. 113 of JaegerNote: this means 0.02 m.Projected Range and StraggleEE143 – Ali JaveySelective Implantation       solution ldimensiona-one is xNstraggle transverse2221,RRayerfcRayerfcyFyFxNyxNEE143 – Ali JaveyTransverse (or Lateral) Straggle (Rt or  R) RtRtRp>1RtRpEE143 – Ali JaveyyMaskC(y) at x=Rpx = RpImplanted specieshas lateral distribution,larger than mask opening Implanted specieshas lateral distribution,larger than mask opening xyHigher concentrationLowerconcentrationFeature Enlargement due to lateral straggleEE143 – Ali Javey(2) Projected Range:(3) Longitudinal Straggle:(1) Dose C x dx0(4) Skewness: (5) Kurtosis: dxxCxRp01    dxxCRxRpp0221( ) ( )00,303<>-orMdxxCRpxM  04dxxCRxpRpxC(x)Kurtosis characterizes thecontributions of the “tail” regions -describes asymmetry between left side and right side Definitions of Profile ParametersEE143 – Ali JaveySelective Implantation – Mask thickness•Desire Implanted Impurity Level to be Much Less Than Wafer DopingN(X0) << NBorN(X0) < NB/10EE143 – Ali JaveyWhat fraction of dose gets into Si substrate?x=0 x=dC(x)Mask material (e.g. photoresist)Si substrateC(x)Mask material with d=x=0 x=d-Transmission Factor of Implantation MaskEE143 – Ali Javey      T C x dx C x dxerfcd RRerfc x e dyC x dC x Rdppyxp  000412 212102Rule of thumb Good masking thickness:d R Rp p 4 3. ~are values of for ions intothe masking materialRpRp,Transmitted FractionEE143 – Ali JaveyJunction Depth  BpppjBppjpBjNNRRxNRRxNNxNln22exp22The junction depth is calculated from the point at which the implant profile concentration = bulk concentration:EE143 – Ali JaveySheet Resistance RS of Implanted LayersxC(x) log scalexjCBnTotal doping concpp-sub (CB)n    jx0BSdxCxCxq1RExample:n-type dopants implantedinto p-type substratex =0x =xjxEE143 – Ali JaveyApproximate Value for RS   Rq C x dxqRqRohmsxssj1 110 If C(x) >>CB for most depth x of interest and use approximation: (x) ~ constantuse the  for the highestdoping region which carriesmost of the currentThis expression assumes ALLimplanted dopants are 100%electrically activatedor ohm/squareEE143 – Ali Javey200 keV Phosphorus is implanted into a p-Si ( CB= 1016/cm3) with a dose of 1013/cm2 . From graphs or tables , Rp =0.254 m , Rp=0.0775m (a) Find peak concentrationCp = (0.4 x 1013)/(0.0775 x10-4) = 5.2 x1017/cm3(b) Find junction depths(c) Find


View Full Document

Berkeley ELENG 143 - Section 6 - Ion Implantation

Documents in this Course
TA manual

TA manual

14 pages

Etching

Etching

25 pages

Load more
Download Section 6 - Ion Implantation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Section 6 - Ion Implantation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Section 6 - Ion Implantation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?