DOC PREVIEW
Berkeley ELENG 143 - Microstructure of Electronic Materials

This preview shows page 1-2-3-20-21-40-41-42 out of 42 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Professor N Cheung, U.C. BerkeleyLecture 2EE143 F20101Microstructure of Electronic MaterialsAmorphousmaterialsSingle-CrystalMaterialProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F20102The Si AtomThe Si CrystalHigh-performance semiconductor devices require defect-free crystals“diamond” structureProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F20103Unit cell:View in <100>directionCrystallographic PlanesView in <110>directionView in <111>directionSi lattice constant =5.431Å 5 x 1022atoms/cm3Professor N Cheung, U.C. BerkeleyLecture 2EE143 F20104Miller IndicesCrystallographic NotationNotation Interpretation( h k l )crystal plane{ h k l }equivalent planes[ h k l ]crystal direction< h k l >equivalent directionsh: inverse x-interceptk: inverse y-interceptl: inverse z-intercept(Intercept values are in multiples of the lattice constant;h, k and l are reduced to 3 integers having the same ratio.)Professor N Cheung, U.C. BerkeleyLecture 2EE143 F20105-+Top ofvalence bandBottom ofconduction bandelectronholeEnergy gap=1.12 eVCarrier Concentrations of Intrinsic (undoped) Sin (electron conc)= p (hole conc)= niProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F20106Donors: P, As, SbAcceptors: B, Al, Ga, InDopants in SiBy substituting a Si atom with a special impurity atom (Column Vor Column III element), a conduction electron or hole is created.Professor N Cheung, U.C. BerkeleyLecture 2EE143 F20107n-type SemiconductorIf ND>> NA(such that ND– NA 10 ni):ADNNn ADiNNnp2andNote n >> p+=ND/cm3NA/cm3n-typeProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F20108p-type SemiconductorIf NA>> ND(such that NA– ND 10 ni):Note p >> n+=ND/cm3NA/cm3p-typeDANNp DAiNNnn2andProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F20109Resistivity Range of MaterialsAdding parts/billionto parts/thousandof “dopants” to pureSi can changeresistivity by8 orders ofmagnitude !Si withdopantsSiO2, Si3N4Note:1 -m = 100 -cmProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F2010Principle of Monolithic Process Integration* A sequence of Additive and Subtractivesteps with lateral patterningProcessingStepsExample: CMOS Integrated CircuitSi waferProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201011Crystal PullingCrystal IngotsShaping and Polishing300 mm waferCzochralski Crystal GrowthProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201012Professor N Cheung, U.C. BerkeleyLecture 2EE143 F201013Professor N Cheung, U.C. BerkeleyLecture 2EE143 F2010Maximum impurity of starting Si wafer is equivalent to1 mg of sugar dissolved in an Olympic-size swimming pool..Maximum impurity of starting Si wafer is equivalent to1 mg of sugar dissolved in an Olympic-size swimming pool..99.999999999 % (so99.999999999 % (so--called “eleven nines” ) !!called “eleven nines” ) !!Purity of Starting IC Si WaferPurity of Starting IC Si WaferProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F2010Metallurgic Grade Silicon (MG): Si 90-99%, US$ 1–2.5/kgSolar Grade Silicon (SG)*: Si 99.99–99.999%, US$ 30–40/kgElectronic Grade Silicon (EG): Si > 99.9999%, over US$ 60/kgSolar Cell Grade SiliconFor reference onlyProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201016glass platePhotolithographyPositive ResistRegion exposed to light willbe dissolved in developmentsolution.chromiumProcessing TemperatureAmbientProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F2010Example : Deep UV PhotolithographySequence:(1)Surface Prime, (2) Coat, (3) Prebake,(4) Expose, (5) Post Exposure bake,(6) Develop, (7) Hard BakeProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F2010Example :Deep UV Photolithography(continued)Professor N Cheung, U.C. BerkeleyLecture 2EE143 F2010Example :Deep UVPhotolithography(continued)*All bakingsub-stepsare similarbut with differenttemperature and timeProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201020EtchingIsotropic(e.g. Wet Etching)Anisotropic(e.g. Reactive Ion Etching RIE )Processing TemperatureAmbientPattern resist maskEtching thin filmEtching completedRemove resist maskProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201021SiO2SisolutionHFSiEtching SelectivityExample: HF solution etches SiO2but not Si* A high etching selectivity is usually desiredProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201022“Anisotropic “ Wet Etching of Si CrystalsEtchants : KOH or EDP (Ethylene-Diamine_Pyrocatechol)Top viewCross-sectionEffect of differentmask openingEtching stopsEtching continues(100) SisubstrateProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201023Thermal Oxidation• O2(or H2O) diffuses through SiO2and reacts with Si at the interfaceto form more SiO2.• 1 m of SiO2formed consumes0.44 m of Si substrate.• Thin oxide growth (e.g. gate oxide)- use O2. Dry oxidation• Thick oxide growth (e.g. fieldoxide) - use H2O. Wet oxidationOxide (Xox)thicknessOxidation time(t)ttSi + O2 SiO2Si + 2 H2O  SiO2+ 2H2Processing Temperature900-1100oCProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201024Uneven surface topography with windowoxidationSi1stoxidation2ndoxidationSiPattern oxide windowby litho and etchSiO2SiNote uneven Si surfaceafter window oxidationSiO2SiSiO2SiSiO2Realistic topographywith 2-dimensional effectProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201025Thermal OxidizationnitrideSiSi3N4O2Sipad oxide~100 Asilicon nitrideas oxidation maskLocal Oxidation“LOCOSProcess”SiO2Professor N Cheung, U.C. BerkeleyLecture 2EE143 F201026Ion ImplantationIon Energy~1 keV to200 keVProcessing TemperatureRoom temp duringimplantation.After implantation,a 900oC-1000oCanneal step is needed to:1) activate dopants2) restore Si crystallinitytypically used to introduce dopants into semiconductorsProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201027Diffusion TasDKinTempTEnergyActivationQConstantDiffusionDeDDkTQ0• To introduce dopants into semiconductors [ Predeposition]• To spread out the dopant profile [ Drive-in]Processing Temperature850-1150oCProfessor N Cheung, U.C. BerkeleyLecture 2EE143 F201028Predeposition• Si surface concentrationmaintained at constant Cs(solid-solubility) during predep.• Dose of dopantincorporation (in #/cm2)=DtCs2Professor N Cheung, U.C. BerkeleyLecture 2EE143 F201029Predeposition and Drive-in•Drive-in meansremoving dopant supplyafter Predep step andanneal at hightemperature•Half-gaussian depthprofile after long drive-in.•Dopant dose conservedduring drive-in.•Diffusion distance DtPredep


View Full Document

Berkeley ELENG 143 - Microstructure of Electronic Materials

Documents in this Course
TA manual

TA manual

14 pages

Etching

Etching

25 pages

Load more
Download Microstructure of Electronic Materials
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Microstructure of Electronic Materials and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Microstructure of Electronic Materials 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?