DOC PREVIEW
Berkeley ELENG 143 - Ion Implantation

This preview shows page 1-2-3-24-25-26 out of 26 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Ion ImplantationxBlocking maskSi+C(x)as-implantdepth profileConcentration Profile versus Depth is a single-peak functionDepth xEqual-ConcentrationcontoursReminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.y2Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Advantages of Ion Implantation• Precise control of dose and depth profile• Low-temp. process (can use photoresist as mask)• Wide selection of masking materialse.g. photoresist, oxide, poly-Si, metal• Less sensitive to surface cleaning procedures• Excellent lateral dose uniformity (< 1% variation across 12” wafer)n+n+Application example: self-aligned MOSFET source/drain regionsSiO2p-SiAs+As+As+Poly Si Gate3Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Monte Carlo Simulation of 50keV Boron implanted into SiYou can download this program from http://www.srim.org/index.htm4Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06[Conc] = # of atoms/cm3[dose] = # of atoms/cm2[Conc] = # of atoms/cm3[dose] = # of atoms/cm2Depth x in cmdose ()φ=∞∫Cxdx0C(x) in #/cm3(1) Range and profile shape depends on the ion energy(for a particular ion/substrate combination)(2) Height (i.e. Concentration) of profile depends on the implantation dose5Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Mask layer thickness can block ion penetrationThin maskThickMaskphotoresistSiO2 ,Si3N4 ,or othersCompleteblockingIncompleteBlockingSUBSTRATENo blocking6Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Ion Implantere.g. AsH3As+, AsH+, H+, AsH2+Magnetic Mass separationIonsourceTranslationalwafer holdermotion.As+AcceleratorColumnAccelerator Voltage: 1-200kVDose ~ 1011-1016/cm2Accuracy of dose: <0.5%Uniformity<1% for 8” wafer$3-4M/implanterion beam (stationary)waferspinning waferholder~60 wafers/hour7Professor N Cheung, U.C. BerkeleyLecture 7EE143 S068Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Eaton HE3 High Energy Implanter, showing the ion beam hitting the 300mm wafer end-station.9Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Implantation Dose[]2cm#AreaScanningBeamIontimeImplantqampsinCurrentBeamIon=×=ΦOver-scanning of beam across wafer is common. In general , Implant area > Wafer areaOver-scanning of beam across wafer is common. In general , Implant area > Wafer areaFor singly charged ions (e.g. As+)Dose10Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06ASecondaryelectron effecteliminatedeFaradaycupions++VPractical Implantation Dosimetry+ bias applied to Faraday Cup to collectall secondary electrons.Cup current = Ion current* (Charge collected by integrating cup current ) / (cup area) = doseWafer holder wheelaperture for dose monitoring11Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Dose [#/area] : looking downward, how many fishper unit area for ALL depths ?Concentration [#/volume] :Looking at a particular location, how many fish per unit volume ?Meaning of Dose and Concentration12Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Ion Implantation Energy Loss MechanismsSi++SiSiee++ElectronicstoppingNuclearstoppingCrystalline Si substrate damaged by collisionElectronic excitation creates heat13Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Light ions/at higher energy more electronic stoppingHeavier ions/at lower energy more nuclear stoppingEXAMPLES Implanting into Si:Ion Energy Loss CharacteristicsH+B+As+Electronic stoppingdominatesElectronic stoppingdominatesNuclear stoppingdominates14Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Stopping MechanismsE1(keV) E2(keV)B into Si 3 17P into Si 17 140As into Si 73 80015Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06SubstrateLess crystallinedamageSe > SnMore crystallinedamage at end of range Sn> SeSurfacex ~ RpA+Eo= incidentkineticenergySeE ~ 0SnE=EoSeSnDepth xSn≡ dE/dx|nSe≡ dE/dx|e16Professor N Cheung, U.C. BerkeleyLecture 7EE143 S0617Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Gaussian Approximation of One-Dimensional Implant Depth ProfileC(x)Cp0.61 Cp∆RpRpx=0Depth x()()()straggleallongitudinRrangeprojectedReCxCppR2Rxp2p2p=∆=⋅=∆−−yxUniform implantation at all lateral positionsNote: This is for no masking18Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Rp and ∆Rp values are given in tables or charts e.g. see pp. 113 of JaegerProjected Range and StraggleNote: this means 0.02 µm.19Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Rp and ∆Rp values from Monte Carlo simulation[see 143 Reader for other ions](both theoretical & expt values are well known for Si substrate)10 10 0 10 0 010 010 0 010 0 0 0∆Rp=185.34201 +6.5308 E -0.01745 E2 +2.098e-5 E3 -8.884e-9 E4Rp=51.051+32.60883 E -0.03837 E2 +3.758e-5 E3 -1.433e-8 E4∆RpRpB11 into SiProjected Range & Straggle in AngstromIon Energy E in keV20Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06()()[]ppRCdxxCdxxC∆πφ⋅⋅=≈=∫∫∞+∞−∞20xppRC∆πφ⋅=∴2pR∆φ4.0≅GaussianUsing Gaussian Approximation:+∞−∞negligibleDose-Concentration Relationship Dose =Cp21Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Junction Depth, xjxC(x) xjCBxj1xj2Deep Implant()for C(x) is used : japproxGaussianIfxxC==C(x) CBShallowImplantCB= Bulk ConcentrationCpexp [ - ( xj-Rp) 2/ 2(∆Rp) 2] = CBwe can solve for xj .x22Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Sheet Resistance RSof Implanted LayersxC(x) log scalexjCBµ10171019µnTotal doping concµpp-sub (CB)n() ()[]∫−µ⋅=jx0BSdxCxCxq1RExample:n-type dopants implantedinto p-type substratex =0x =xjx•Needs numerical integrationto get Rs value23Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Approximate Value for RS()[]⇒→ ≅≅=∫RqCxdxqRqRohmsxssj1110µµφµφIf C(x) >>CBfor most depth x of interest and use approximation: µ(x) ~ constantuse the µ for the highestdoping region which carriesmost of the currentThis expression assumes ALLimplanted dopants are 100%electrically activatedor ohm/square24Professor N Cheung, U.C. BerkeleyLecture 7EE143 S06Example Calculations200 keV Phosphorus is implanted into a p-Si ( CB= 1016/cm3) with a dose of 1013/cm2. From graphs or tables , Rp =0.254 µm , ∆Rp=0.0775µm(a) Find peak concentrationCp = (0.4 x


View Full Document

Berkeley ELENG 143 - Ion Implantation

Documents in this Course
TA manual

TA manual

14 pages

Etching

Etching

25 pages

Load more
Download Ion Implantation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Ion Implantation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Ion Implantation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?