DOC PREVIEW
Berkeley ELENG 143 - Electrical Characteristics of MOS Devices

This preview shows page 1-2-3-20-21-40-41-42 out of 42 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Electrical Characteristics of MOS Devices• The MOS Capacitor– Voltage components– Accumulation, Depletion, Inversion Modes– Effect of channel bias and substrate bias– Effect of gate oxide charges– Threshold-voltage adjustment by implantation– Capacitance vs. voltage characteristics• MOS Field-Effect Transistor– I-V characteristics– Parameter extraction2Professor N Cheung, U.C. BerkeleyLecture 22EE143 F052) Visit the Device Visualization Websitehttp://jas.eng.buffalo.edu/and run the visualization experiments of1) Charge carriers and Fermi level, 2) pn junctions 3) MOS capacitors4) MOSFETs1) Revisit EE143 Week#2 Reading Assignment- Introduction to IC Devices, www.icknowledge.com- Streetman, Chap 3 Energy Band and Chargecarriers in Semiconductors.3Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Negligible electron concentration underneath Gate region; Source-Drain is electrically openHigh electron concentration underneath Gate region; Source-Drain is electrically connectedVG < VthresholdVG > VthresholdMetal -Oxide-Semiconductor Transistor [ n-channel]4Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Work Function of MaterialsEoEVECq ΦSEMICONDUCTOREfEoEfMETALWork function= qΦVacuum energy levelqΦMis determined by the metal materialqΦSis determined by the semiconductor material,the dopant type, and doping concentration5Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Work Function (qΦM) of MOS Gate MaterialsEo= vacuum energy level Ef= Fermi levelEC = bottom of conduction band EV = top of conduction bandEfAl = 4.1 eVTiSi2= 4.6 eVEfEoqΦMEoqΦMEiECEV0.56eVqχ = 4.15eV0.56eVqχ = 4.15eV (electron affinity)EoEiECEV0.56eVqχ = 4.15eV0.56eVEfn+ poly-Sip+ poly-SiqΦM6Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Work Function of doped Si substrateqχ = 4.15eV EfEoqΦsEiECEV|qΦF|0.56eV0.56eV* Depends on substrate concentration NBEfEoqΦsEiECEV|qΦF|0.56eV0.56eVqχ = 4.15eV n-type Sip-type SiΦs (volts) = 4.15 +0.56 - |ΦF|Φs (volts) = 4.15 +0.56 + |ΦF|=ΦiBFnNqkTln7Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05The MOS Capacitor SioxFBGVVVV++=oxoxoxxCε=[F/cm2]“metal”oxidesemiconductorVG++_VFBVoxVSi+_+_xoxOxide capacitance/unit area8Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Flat Band Voltage• VFBis the “built-in” voltage of the MOS:• Gate work function ΦM:Al: 4.1 V; n+ poly-Si: 4.15 V; p+ poly-Si: 5.27 V• Semiconductor work function ΦS :• Vox= voltage drop across oxide (depends on VG)• VSi= voltage drop in the silicon (depends on VG)SMFBVΦ−Φ≡Φs (volts) = 4.15 +0.56 - |ΦF| for n-SiΦs (volts) = 4.15 +0.56 + |ΦF| for p-Si9Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05A) Accumulation: VG< VFBfor p-type substrateVSi≈ 0, so Vox= VG- VFBQSi’ = charge/unit area in Si=Cox(VG- VFB )MOS Operation ModesMOSi (p-Si)Thickness of accumulation layer ~0holes10Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05MOS Operation Modes• B) Flatband: VG= VFBNo charge in Si (and hence no charge in metal gate)•VSi= Vox= 0MOS (p-Si)11Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05C) Depletion: VG> VFB MOS Operation Modes (cont.)MOS (p-Si)qNBxds2dBoxdBFBG2xqNCxqNVVε++=(can solve for xd)BSiSidqNV2xε=VoxVSiDepletion layer12Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05xx=0Q'Metalρ(x)Oxidex=xox−ρxdx=0Q'Metal Semiconductorρ(x)Oxidex=xox=xo+Q'-x−ρxdx=0Q'Metal Semiconductorρ(x)Oxidex=xox=xo+SemiconductorDepletion Mode :Charge and Electric Field Distributionsby Superposition Principle of Electrostaticsxxdx=0Metal SemiconductorE(x)Oxidex=xox=xo+xxdx=0Metal SemiconductorE(x)Oxidex=xox=xo+xxdx=0Metal SemiconductorE(x)Oxidex=xox=xo+=+13Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05D) Threshold of Inversion: VG= VTnsurface= NB(for p-type substrate)=> VSi= 2|ΦF|MOS Operation Modes (cont.)M O S (p-Si)qNBxdmaxFoxBFsFBTGCqNVVV Φ+Φ+== 222 )(εQ’nThis is a definitionfor onset of strong inversion14Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05E) Strong Inversion: VG> VTMOS Operation Modes (cont.)MOS (p-Si)qNaxdmax)(maxTGoxnoxndBoxVVCQCQxqNV−−≈′′+=BFSidqNxΦ=ε4maxQ’nelectronsxdmaxis approximately unchanged when VG> VT15Professor N Cheung, U.C. BerkeleyLecture 22EE143 F0516Professor N Cheung, U.C. BerkeleyLecture 22EE143 F0517Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05p-Si18Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Most derivations for MOS shown in lecture notes are done with p-type substrate (NMOS) as example.Repeat the derivations yourself for n-type substrate(PMOS) to test your understanding of MOS.Suggested Exercise19Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05VG(more positive)VFBVTAccumulation(holes)depletionstrong inversion(electrons)p-Si substrate (NMOS)n-Si substrate (PMOS)VG(more negative)VFBVTAccumulation(electrons)depletionStrong inversion(holes)20Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05AccumulationDepletionInversionVox= Qa/CoxVSi~ 0Vox=qNaxd/CoxVSi= qNaxd2/(2εs)Vox= [qNaxdmax+Qn]/CoxVSi= qNaxdmax2/(2εs)= 2|ΦF|Voltage drop = area under E-field curve* For simplicity, dielectric constants assumed to be same for oxide and Si in E-field sketches21Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Appendix-Electron Energy Band- Fermi Level-Electrostatics of device charges22Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Electron Potential EnergyIsolated atomsAtoms ina solidAvailable statesat discreet energy levelsAvailable statesas continuous energy levelsinside energy bands Conduction Band and Valence Band23Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05The Simplified Electron Energy Band Diagram24Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05xElectron EnergyE-field+-ECEV21xElectron EnergyE-field+-ECEV21Electric potential φ(2) < φ(1)Electric potential φ(2) > φ(1)Energy Band Diagram with E-fieldElectron concentration n kT/)]1()2([qkT/)1(qkT/)2(qeee)1(n)2(nφ−φφφ==25Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05Probability of available states at energy E being occupied f(E) = 1/ [ 1+ exp (E- Ef) / kT] where Ef is the Fermi energy and k = Boltzmann constant=8.617 ∗ 10-5eV/KThe Fermi-Dirac Distribution (Fermi Function)T=0K0.5E -Eff(E)26Professor N Cheung, U.C. BerkeleyLecture 22EE143 F05(2) Probability of available states at energy E NOT being occupied 1- f(E) = 1/ [ 1+ exp (Ef-E) /


View Full Document

Berkeley ELENG 143 - Electrical Characteristics of MOS Devices

Documents in this Course
TA manual

TA manual

14 pages

Etching

Etching

25 pages

Load more
Download Electrical Characteristics of MOS Devices
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Electrical Characteristics of MOS Devices and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Electrical Characteristics of MOS Devices 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?