DOC PREVIEW
Berkeley ELENG 143 - Lecture Notes

This preview shows page 1-2-19-20 out of 20 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06-Electron Energy Band- Fermi Level-Electrostatics of device charges2Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06The Simplified Electron Energy Band Diagram3Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06xElectron EnergyE-field+-ECEV21xElectron EnergyE-field+-ECEV21Electric potential φ(2) < φ(1)Electric potential φ(2) > φ(1)Energy Band Diagram with E-fieldElectron concentration n kT/)]1()2([qkT/)1(qkT/)2(qeee)1(n)2(nφ−φφφ==4Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06Probability of available states at energy E being occupied f(E) = 1/ [ 1+ exp (E- Ef) / kT] where Ef is the Fermi energy and k = Boltzmann constant=8.617 ∗ 10-5eV/KThe Fermi-Dirac Distribution (Fermi Function)T=0K0.5E -Eff(E)5Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06(2) Probability of available states at energy E NOT being occupied 1- f(E) = 1/ [ 1+ exp (Ef-E) / kT]Properties of the Fermi-Dirac Distribution(1) f(E) ≅ exp [- (E- Ef) / kT] for (E- Ef) > 3kTNote:At 300K,kT= 0.026eV•This approximation is called Boltzmann approximationProbabilityof electron state at energy Ewill be occupied6Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06EcEvEiEf(n-type)Ef(p-type)q|ΦF|Let qΦF≡ Ef-Ein = niexp [(Ef-Ei)/kT]∴n = niexp [qΦF /kT]How to find Efwhen n(or p) is known7Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06Dependence of Fermi Level with Doping ConcentrationEi≡ (EC+EV)/2 Middle of energy gapWhen Si is undoped, Ef= Ei ; also n =p = ni8Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06At thermal equilibrium ( i.e., no external perturbation),The Fermi Energy must be constant for all positionsThe Fermi Energy at thermal equilibriumMaterial AMaterial BMaterial CMaterial DEFPosition xElectron energy9Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06AftercontactformationBeforecontactformationElectron Transfer during contact formationESystem 1System 2EF1EF2eSystem 1System 2EF---+++ESystem 1System 2EF1EF2eSystem 1System 2EF---+++Net negative chargeNet positive charge10Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06Fermi level of the side which has a relatively higher electric potential will have a relatively lower electron energy ( Potential Energy = -q • electric potential.) Only difference of the E 's at both sides are important, not the absolute position of the Fermi levels.Side 2Side 1Ef1f2EVa> 0qVaVaSide 2Side 1Ef1f2EVa< 0q| |+- -+Potential difference across depletion region= Vbi-VaApplied Bias and Fermi Level11Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06PN junctionsComplete Depletion Approximation used for charges inside depletion regionr(x) ≈ ND+(x) – NA-(x)n-Sip-SiDepletion regionND+onlyNA-onlyρ(x) is +ρ(x) is -ND+ and nρ(x) is 0NA-and pρ(x) is 0E-field++++----Quasi-neutralregionQuasi-neutralregionn-Sip-SiDepletion regionND+onlyNA-onlyρ(x) is +ρ(x) is -ND+ and nρ(x) is 0NA-and pρ(x) is 0E-field++++----Quasi-neutralregionQuasi-neutralregionhttp://jas.eng.buffalo.edu/education/pn/pnformation2/pnformation2.htmlThermal Equilibrium12Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S061) Summation of all charges = 0Electrostatics of Device Charges xρ1Semiconductorρ(x)ρ2xd1xd2Semiconductor--x=0p-typen-type2) E-field =0 outside depletion regionsρ2• xd2= ρ1• xd1E = 0E = 0E ≠013Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S063) Relationship between E-field and charge density ρ(x)d [ε E(x)] /dx = ρ(x) “Gauss Law”4) Relationship between E-field and potential φE(x) = - dφ(x)/dx14Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06Example Analysis : n+/ p-Si junctionx-qNaxdx=0+Q'n+ Sip-Siρ(x)E (x)xd1) ⇒ Q’ = qNaxd3) ⇒Slope = qNa/εs4) ⇒ Area under E-field curve = voltage across depletion region = qNaxd2/2εsEmax=qNaxd/εsDepletionregion2) ⇒ E = 0Depletion regionis very thin and is approximated as a thin sheet charge15Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06x-x=0-qNA+qNDρ(x)-xp+xnx=0xρ1(x)-xp-qNAQ=+qNAxpxx=0ρ2(x)+qND+xnQ=-qNAxpSuperposition PrincipleIf ρ1(x) ⇒ E1(x) and V1(x)ρ2(x) ⇒ E2(x) and V2(x) thenρ1(x) + ρ2(x) ⇒ E1(x) + E2(x) and V1(x) + V2(x)+16Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06x-x=0Slope =-qNA/εsE1(x)-xpx=0xρ1(x)-xp-qNAQ=+qNAxpxx=0ρ2(x)+qND+xnQ=-qNAxp+x-x=0+xnE2(x)Slope =+qND/εs17Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06x-x=0Slope = - qNA/εsE(x) = E1(x)+ E2(x)-xp+xnSlope = + qND/εsEmax = -qNA xp/εs= -qND xn/εsSketch of E(x)18Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06xx=0Q'Metalρ(x)Oxidex=xox−ρxdx=0Q'Metal Semiconductorρ(x)Oxidex=xox=xo+Q'-x−ρxdx=0Q'Metal Semiconductorρ(x)Oxidex=xox=xo+SemiconductorDepletion Mode :Charge and Electric Field Distributionsby Superposition Principle of Electrostaticsxxdx=0Metal SemiconductorE(x)Oxidex=xox=xo+xxdx=0Metal SemiconductorE(x)Oxidex=xox=xo+xxdx=0Metal SemiconductorE(x)Oxidex=xox=xo+=+19Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06Approximation assumesVSidoes not change muchOXOXCnV∆∝∆SiOXFBGVVVV++=Picks up all the changesin VGJustification:If surface electron densitychanges by ∆n EiEf()kTennlnδ∝∆∆∝δδbut the change of VSi changes only by kT/q [ ln (∆n)] – small!Why xdmax~ constant beyond onset of strong inversion ?Higher than VT20Professor N Cheung, U.C. BerkeleySemiconductor Tutorial 2EE143 S06VSi n-surface0 2.10E+040.1 9.84E+050.2 4.61E+070.3 2.16E+090.4 1.01E+110.5 4.73E+120.6 2.21E+140.7 1.04E+160.8 4.85E+170.9 2.27E+19n-surfacep-SiNa=1016/cm3EfEi0.35eVn-bulk = 2.1 • 104/cm3qVSiOnset of strong inversion(at VT)N (surface) = n (bulk) • exp [


View Full Document

Berkeley ELENG 143 - Lecture Notes

Documents in this Course
TA manual

TA manual

14 pages

Etching

Etching

25 pages

Load more
Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?