DOC PREVIEW
Berkeley ELENG 143 - Lecture Notes

This preview shows page 1-2-3-27-28-29 out of 29 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Professor N Cheung, U.C. BerkeleyLecture 10EE143 F20101Dopant Diffusion(1) Predepositiondopant gasSiO2SiO2Sidose control(2) Drive-inTurn off dopant gasor seal surface with oxideSiO2SiO2SiSiO2Doped Si regionprofile control(junction depth;concentration)Note: Predeposition by diffusion can also bereplaced by a shallow implantation step.Note: Predeposition by diffusion can also bereplaced by a shallow implantation step.Professor N Cheung, U.C. BerkeleyLecture 10EE143 F20102Dopant Diffusion Sources(a) Gas Source: AsH3, PH3, B2H6(b) Solid SourceBN Si BN SiB oxide +SiO2(c) Spin-on-glassSiO2+dopant oxideProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F20103(d) Liquid Source.Professor N Cheung, U.C. BerkeleyLecture 10EE143 F20104Solid Solubility of Common Impurities in SioCC0(cm-3)Professor N Cheung, U.C. BerkeleyLecture 10EE143 F20105Diffusion Coefficients of Impurities in Si10-1410-1310-12B,PAs10-6AuCukTEOAeDDProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F20106Temperature Dependence of D.,/106.8050tabulatedareEDkelvineVconstantBoltzmankeVinenergyactivationEeDDAAkTAEArrhenius RelationshipProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F20107Mathematics of DiffusionFick’s First Law:  sec][:,,2cmDconstantdiffusionDxtxCDtxJJC(x)xProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F20108From the Continuity Equation  x)t,x(CDxt)t,x(Cx)t,x(CDxx)t,x(Jt)t,x(C0t,xJtt,xC“Diffusion Equation”Professor N Cheung, U.C. BerkeleyLecture 10EE143 F20109If D is independent of C(i.e., D is independent of x).C x ttDC x tx, ,22Concentration Independent Diffusion EquationConcentration Independent Diffusion EquationConcentration independence of DState of the art devices use fairly high concentrations,causing variable diffusivity and other significant side-effects (transient-enhanced diffusion, for example.)State of the art devices use fairly high concentrations,causing variable diffusivity and other significant side-effects (transient-enhanced diffusion, for example.)Professor N Cheung, U.C. BerkeleyLecture 10EE143 F201010--     Boundary ConditionsInitial ConditionC x t C solid solubility of the dopantC x tC x t::,,,000 00A. Predeposition Diffusion ProfileJustification:Si wafers are ~500um thick, dopingdepths of interest are typically < several umAt time =0, there is no diffused dopantin substrateProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201011 002002221,2CDtDtxerfcCdyeCtxCDtxyC0t3>t2t2>t1x=0xt1Characteristic distance for diffusion.Surface Concentration (solid solubility limit)Diffusion under constant surface concentrationProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201012erf (z) =2 0 z e-y2 dy erfc (z) 1 - erf (z)erf (0) = 0 erf() = 1 erf(- ) = - 1erf (z)2 z for z <<1 erfc (z)1e-z2z for z >>1d erf(z)dz = -d erfc(z)dz =2 e2-zd2 erf(z)dz2 = -4 z e2-z0z erfc(y)dy = z erfc(z) +1 (1-e-z2 )0 erfc(z)dz =1Properties of Error Function erf(z)and Complementary Error Function erfc(z)Professor N Cheung, U.C. BerkeleyLecture 10EE143 F201013The value of erf(z) can be found in mathematical tables, as build-in functions in calculators andspread sheets. If you have a programmable calculator, this approximation is accurate to 1 part in107: erf(z) = 1 - (a1T + a2T2+a3T3+a4T4+a5T5) e-z2where T =11+P z and P = 0.3275911a1= 0.254829592 a2= -0.284496736 a3= 1.421413741 a4= -1.453152027 a5= 1.06140542910-710-610-510-410-310-210-110 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6erfc(z)exp(-z^2)Practical Approximations of erf and erfcProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201014   DtxeDtCoxCtDtCdxtxCtQ422,00[1] Predeposition dose[2] Concentration gradientProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201015B. Drive-in Profile   --DtxerfcCotxCConditionsInitialxCtxCConditionsBoundaryx20,:00,:0xC(x)x=0Predep’s (Dt)Physical meaning of C/x =0:No diffusion flux in/out of the Sisurface. Therefore, dopant dose isconservedProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201016   xQtxC 0,C(x,t=0)xSolution of Drive-in Profilewith Shallow Predeposition Approximation:C x tQDtedrive inxDtdrive in, 24C(x,t)xt1t2QC Dtpredep02Approximate predep profileas a delta function at x=0Professor N Cheung, U.C. BerkeleyLecture 10EE143 F201017indrivepredepDtDtRLetxApproximation over-estimates conc. hereApproximationunder-estimatesconcentration here.GoodagreementC(x)/C0R=1R=0.25Exact solutionDelta functionApproximationHow good is the (x) approximation ?For reference onlyFor reference onlyProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201018Summary of Predeposition + Drive-in 2224212211022112tDxetDtDCxCtDtDDiffusivity at Predeposition temperaturePredeposition timeDiffusivity at Drive-in temperatureDrive-in time*This will be the overall diffusion profile after a “shallow” predepositiondiffusion step, followed by a drive-in diffusion step.Professor N Cheung, U.C. BerkeleyLecture 10EE143 F201019PredepositionPredepositionDrive-inDrive-inSemilog Plots of normalized Concentration versus depthProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201020Note:  is the implantation doseNote:  is the implantation doseDiffusion of Gaussian Implantation ProfileProfessor N Cheung, U.C. BerkeleyLecture 10EE143 F201021T h e e x a c t s o lu tio n s w ith C x= 0 a t x = 0 (.i.e . n o d o p a n t lo s s th ro u g h s u r fa c e ) c a n b e c o n s tru c te d b y a d d in g a n o th e r fu ll g a u s s ia n p la c e d a t -Rp[M e th o d o fIm a g e s ].C (x , t) =2  (  R2p + 2 D t)1 /2 [ e-(x - Rp)22 ( R2p + 2 D t) + e-(x + Rp)22 ( R2p + 2 D t) ]W e c a n s e e th a t in th e lim it (D t)1 /2 > > Rp a n d  Rp ,C (x ,t)  e- x2/4 D t(D t)1 /2(th e h a lf-g a u s s ia n


View Full Document

Berkeley ELENG 143 - Lecture Notes

Documents in this Course
TA manual

TA manual

14 pages

Etching

Etching

25 pages

Load more
Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?