DOC PREVIEW
MIT 6 012 - The Bipolar Junction Transistor

This preview shows page 1-2-19-20 out of 20 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-1Lecture 18 - The Bipolar Junction Transistor(II)Regimes of OperationNovember 10, 2005Contents:1. Regimes of operation.2. Large-signal equivalent circuit model.3. Output characteristics.Reading assignment:Howe and Sodini, Ch. 7, §§7.3, 7.4Announcements:Quiz 2: 11/16, 7:30-9:30 PM,open book, mustbring calculator; lectures #10-18.6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-2Key questions• What other regimes of operation are there for theBJT?• What is unique about each regime?• How do equivalent circuit models for the BJT looklike?6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-31. Regimes of operationsaturationreversecut-offforwardactiveVBCVBCVCEVBEVBEBCE+-+-+-• forward active: device has good isolation and highgain; most useful regime;• saturation: device has no isolation and is flooded withminority carriers ⇒ takes time to get out of satura-tion; avoid• reverse: poor gain; not useful;• cut-off : negligible current: nearly an open circuit;useful.6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-42 Forward-active regime: VBE> 0, VBC< 0n-Emitterp-Basen-CollectorIE<0IB>0IC>0VBE > 0VBC < 0Minority carrier profiles ( not to scale):npBpnEpnCnpBopnEopnCo0WB-XBEWB+XBC-WE-XBEWB+XBC+WCxemitter basecollector6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-5• Emitter injects electrons into base, collector collectselectrons from base:IC= ISexpqVBEkT• Base injects holes into emitter, recombine at emittercontact:IB=ISβF(expqVBEkT− 1)• Emitter current:IE= −IC− IB= −ISexpqVBEkT−ISβF(expqVBEkT− 1)• State-of-the-art IC BJT’s today: IC∼ 0.1 − 1 mA,βF' 50 − 300.• βFhard to control tightly ⇒ circuit design techniquesrequired to be insensitive to variations in βF.6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-62 Reverse regime: VBE< 0, VBC> 0n-Emitterp-Basen-CollectorIE>0IB>0IC<0VBE < 0VBC > 0Minority carrier profiles:npBpnEpnCnpBopnEopnCo0WB-XBEWB+XBC-WE-XBEWB+XBC+WCxemitter basecollector6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-7• Collector injects electrons into base, emitter collectselectrons from base:IE= ISexpqVBCkT• Base injects holes into collector, recombine at collectorcontact and buried layer:IB=ISβR(expqVBCkT− 1)• Collector current:IC= −IE− IB= −ISexpqVBCkT−ISβR(expqVBCkT− 1)• Typically, βR' 0.1 − 5  βF.IBACEBBCIEAEEBBC6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-8Forward-active Gummel plot (VCE=3V ):Reverse Gummel (VEC=3V ):6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-92 Cut-off: VBE< 0, VBC< 0n-Emitterp-Basen-CollectorIE>0IB<0IC>0VBE < 0VBC < 0Minority carrier profiles:npBpnEpnCnpBopnEopnCo0WB-XBEWB+XBC-WE-XBEWB+XBC+WCxemitter basecollector6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-10• Base extracts holes from emitter:IB1= −ISβF= −IE• Base extracts holes from collector:IB2= −ISβR= −IC• These are tiny leakage currents (∼ 10−12A).6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-112 Saturation: VBE> 0, VBC> 0n-Emitterp-Basen-CollectorIEIB<0ICVBE > 0VBC > 0Minority carrier profiles:npBpnEpnCnpBopnEopnCo0WB-XBEWB+XBC-WE-XBEWB+XBC+WCxemitter basecollector6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-12Saturation is superposition of forward active + reverse:IC= IS(expqVBEkT− expqVBCkT) −ISβR(expqVBCkT− 1)IB=ISβF(expqVBEkT− 1) +ISβR(expqVBCkT− 1)IE= −ISβF(expqVBEkT− 1) − IS(expqVBEkT− expqVBCkT)• ICand IEcan have either sign, depending on relativemagnitude of VBEand VBC, and βFand βR.• In saturation, collector and base floo ded with excessminority carriers ⇒ takes lots of time to get transistorout of saturation.EBBCholeselectrons6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-132. Large-signal equivalent circuit modelSystem of equations that describes BJT operation:IC= IS(expqVBEkT− expqVBCkT) −ISβR(expqVBCkT− 1)IB=ISβF(expqVBEkT− 1) +ISβR(expqVBCkT− 1)IE= −ISβF(expqVBEkT− 1) − IS(expqVBEkT− expqVBCkT)Equivalent-circuit model representation:Non-Linear Hybrid- π ModelBCEIS(exp - exp ) qVBEkTISβFqVBE(exp kT-1)ISβRqVBC(exp kT-1)qVBCkTThree parameters in this model: IS, βF, and βR.Model equivalent to Ebers-Moll model in text.6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-14Simplifications of equivalent-circuit model:• Forward-active regime: VBE> 0, VBC< 0BCEBCEVBE,onIBISβFqVBE(exp kT-1)ISexp qVBEkTβFIBFor today’s technology: VBE,on' 0.7 V .IBdepends on outside circuit.• Reverse: VBE< 0, VBC> 0BCEEBCVBC,onISβRqVBC(exp kT-1)ISexp qVBCkTIBβRIBFor today’s technology: VBC,on' 0.5 V .IBalso depends on outside circuit.6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-15IBvs. VBEfor VCE=3V :IBvs. VBCfor VEC=3V :6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-16• Saturation: VBE> 0, VBC> 0BCEBCEVBE,onVBE,onVCE,satVBC,onVBC,onBCE+-Today’s technology: VCE,sat= VBE,on− VBC,on' 0.2 V .IBand ICdepend on outside circuit.• Cut-off: VBE< 0, VBC< 0BCEOnly negligible leakage currents.6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-173. Output characteristicsFirst, ICvs. VCBwith IBas parameter:VCBVBC,onICIBIB=000Next, common-emitter output characteristics(ICvs. VCEwith IBas parameter):VCE=VCB+VBEVCE,satICIBIB=0006.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-18ICvs. VCBfor 0 ≤ IB≤ 100 µA:ICvs. VCEfor 0 ≤ IB≤ 100 µA:6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-19ICvs. VCEfor 0 ≤ IB≤ 100 µA:6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 18-20Key conclusions• Forward-active regime: most useful, device has gainand isolation. For bias calculations:BCEVBE,onIBβFIB• Saturation: device flooded with minority carriers. Notuseful. For bias calculations:VBE,onVCE,satVBC,onBCE+-• Cut-off: device open. Useful. For bias


View Full Document

MIT 6 012 - The Bipolar Junction Transistor

Documents in this Course
Quiz #2

Quiz #2

11 pages

Quiz 1

Quiz 1

11 pages

Exam 2

Exam 2

11 pages

Quiz 1

Quiz 1

13 pages

Quiz 2

Quiz 2

14 pages

Load more
Download The Bipolar Junction Transistor
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view The Bipolar Junction Transistor and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view The Bipolar Junction Transistor 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?