DOC PREVIEW
MIT 6 012 - Lecture Notes

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

6.012 Spring 2007 Lecture 161Lecture 16The pn Junction Diode (III)Outline• Small-signal equivalent circuit model• Carrier charge storage–Diffusion capacitanceReading Assignment:Howe and Sodini; Chapter 6, Sections 6.4 - 6.56.012 Spring 2007 Lecture 162I-V Characteristics Diode Current equation:I = IoeVVth()−1⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ IVlg |I|V000IoIolinear scalesemilogarithmic scale0.43qkT=60 mV/dec @ 300K6.012 Spring 2007 Lecture 1632. Small-signal equivalent circuit modelIf v small enough, linearize exponential characteristics:i =qIkT• vExamine effect of small signal adding to forward bias:From a small signal point of view. Diode behaves as conductance of value:I + i = IoeqV+v()kT⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −1⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ≈ IoeqV+v()kT⎛ ⎝ ⎜ ⎞ ⎠ ⎟ I + i ≈ IoeqVkT()eqvkT()⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ≈ IoeqVkT()1+qvkT⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = IoeqVkT()+ IoeqVkT()qvkTThen:gd=qIkT6.012 Spring 2007 Lecture 164Small-signal equivalent circuit modelgddepends on bias. In forward bias:gd=qIkTgdis linear in diode current.gd6.012 Spring 2007 Lecture 165Capacitance associated with depletion region:Depletion or junction capacitance:Cj= AqεsNaNd2 Na+ Nd()φB−VD()−xpxnxp-siden-side−qNa(a)−xpxnxρ(x)ρ(x)p-siden-side+qNd+qNd−qNaQJ = −qNaxp qJ = −qNaxp (b)vD = VD + vd > VD-->xp < xp,|qJ| < |QJ| xnxnxn−xp−xp−xpvD = VD (c)x∆ρ(x) = ρ(x) − ρ(x) p-siden-sideqj = qNa∆xp −qj = −qNd∆xn Xdqj = qj − Qj > 0= −qNaxp − (−qNaxp)= qNa (xp −xp) = qNa∆xp + qNd− qNaCj= Cj(VD) =dqJdvDVD6.012 Spring 2007 Lecture 166can rewrite as:Cj= AqεsNaNd2 Na+ Nd()φB•φBφB−VD()or,Cj=Cjo1−VDφBCjo≡ zero-voltage junction capacitanceCj=2CjoCjgdSmall-signal equivalent circuit modelUnder Forward Bias assume VD≈φB26.012 Spring 2007 Lecture 1673. Charge Carrier Storage:diffusion capacitanceWhat happens to majority carriers?Carrier picture thus far:If QNR minority carrier concentration ↑ but majority carrier concentration unchanged? ⇒ quasi-neutrality is violated.ln p, npopnonNdni2Ndx0Nani2Na6.012 Spring 2007 Lecture 168Quasi-neutrality demands that at every point in QNR:pn(x) − pno=nn(x)−nnoexcess minority carrier concentration= excess majority carrier concentrationMathematically:Define integrated carrier charge:qPn= qA12pn(xn) − pno()• Wn− xn()= qAWn− xn2ni2NdeqVkT−1⎡ ⎣ ⎢ ⎤ ⎦ ⎥ =−qNnx−xpxn;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;00(p-type) (n-type)pp(x) = Na + np(x) nn(x) = Nd + pn(x) pn(xn) = pno . eVD/Vth pn(Wn) = pnonp(−xp) = npo . eVD/Vth np(−Wp) = npometalcontact top regionmetalcontact ton regionppo = Na nno = Nd carrier concentrations(cm−3)pn(x)np(x)−WpWn6.012 Spring 2007 Lecture 169Now examine small increase in V:Small increase in V ⇒ small increase in qPn⇒ small increase in |qNn|Behaves as capacitor of capacitance:Cdn=dqPndVVD= qAWn− xn2ni2NdqkTeqVDkT⎡ ⎣ ⎢ ⎤ ⎦ ⎥ x;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;−WpWn−xpxn00metalcontact top regionmetalcontact ton regionp-type n-type−dqNn −dqNp dqPpdqPnnn(xn)[for VD + vd] pn(xn)[for VD + vd] nn(xn)[for VD] pn(xn)[for VD] pp(−xp)[for VD + vd] pp(−xp)[for VD] np(−xp)[for VD + vd] np(−xp)[for VD] carrier concentrations (cm−3)6.012 Spring 2007 Lecture 1610Similarly for p-QNR:Both capacitors sit in parallel ⇒ total diffusion capacitance:Cd= Cdn+CdpComplete small-signal equivalent circuit model for diode:CjCdgdCdp=dqNpdVVD= qAWp− xp2ni2NaqkTeqVDkT⎡ ⎣ ⎢ ⎤ ⎦ ⎥6.012 Spring 2007 Lecture 1611Bias dependence of Cjand Cd:•Cjdominates in reverse bias and small forward bias•Cddominates in strong forward bias∝1φB− V∝ eqVkT⎡ ⎣ ⎢ ⎤ ⎦ ⎥ CV00CdCCj6.012 Spring 2007 Lecture 1612What did we learn today?• Diode Current:• Conductance: associated with current-voltage characteristics–gd∝ I in forward bias,–gdnegligible in reverse bias• Junction capacitance: associated with charge modulation in depletion region• Diffusion capacitance: associated with charge storage in QNRs to maintain quasi-neutrality.Summary of Key ConceptsLarge and Small-signal behavior of diode:Cj∝1φB− VCd∝ eqVkT⎡ ⎣ ⎢ ⎤ ⎦ ⎥ I = Io(eqVkT[]−


View Full Document

MIT 6 012 - Lecture Notes

Documents in this Course
Quiz #2

Quiz #2

11 pages

Quiz 1

Quiz 1

11 pages

Exam 2

Exam 2

11 pages

Quiz 1

Quiz 1

13 pages

Quiz 2

Quiz 2

14 pages

Load more
Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?