DOC PREVIEW
Berkeley ELENG 40 - Lec 11 Phasors and Power

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EE40 Lec 11Phasors and PowerProf. Nathan Cheung10/06/2009Reading: Hambley Chapter 5 (Power Triangle and Sectional 5.6 are optional)Slide 1EE40 Fall 2009 Prof. CheungExample: Single Loop Circuit20kΩ+20kΩ+-1µF10V ∠ 0°VC+-Vout+-ω= 377VinHow do we find VC?First compute impedances for resistor and capacitor:First compute impedances for resistor and capacitor:ZR= 20kΩ= 20kΩ∠0°ZC= 1/j (377•1µF) = 2.65kΩ∠ -90°Slide 2EE40 Fall 2009 Prof. CheungC/j(377µ).6590Then use Voltage Divider FormulaWhat happens when ω changes?20kΩ+V+Complex impedance of C-1µF10V ∠ 0°VC-impedance of C and L will changeω=10ω= 10Find VC20kΩ ∠0°++ZC= 1/j (10• 1µF) 100kΩ∠90°+-10V ∠ 0°VC+-= 100kΩ∠-90°Slide 3EE40 Fall 2009 Prof. CheungPhasor Domain Analysis: Step-by-stepSlide 4EE40 Fall 2009 Prof. CheungPhasor Diagram: Visualization• Convert this circuit to the phasor domain()V30t50020)t(o()V30t500cos20)t(vso+=KVL V VVVSlide 5EE40 Fall 2009 Prof. CheungKVL: Vs=VR+VL+VCAbsolute Phasor DiagramVs=VR+VL+VCSlide 6EE40 Fall 2009 Prof. Cheungac Power– With ac signals we need to think about the instantaneous and average power being delivered(Wh it d th t th thi )•(When it was dc, these two were the same thing)– We will also define a root-mean-square valueSlide 7EE40 Fall 2009 Prof. CheungInstantaneous and Average Values• Instantaneous power is how you thought about power for dc, now it is a function of time– For example, the instantaneous power in a resistor isR)t(i)t(p2=• Average power is the integral of the waveform over one period, T.waveform over one period, T.∫=Tdt)t(p1)t(pSlide 8EE40 Fall 2009 Prof. Cheung∫0)(pT)(pRoot-mean Square (rms) ValueDefinition()()tXdttX1X2T2==∫()()tXdttXTX0RMS==∫B“” i di ti tihBar “--” indicating time-average hereExample: Mean-Square value of a sinusoidal voltage: ()()θ+ωtcosVtv()()θ+ω=tcosVtv0Vv0=Slide 9EE40 Fall 2009 Prof. Cheung2vRMS=Average Power of Impedance Z()()()[]tjj0tjjeVθθV()()()[]()*tjj0tjjtj0tjj0eV1eZeVReeeVRetitvtp=⋅=θθωωθhere)applied ZVI(=()20tj0tjj0V1eZeVeeVRe21 ⋅=ωωθθ−2jVeV[]**0IVRe1ZVRe21 ⋅===⋅=⋅θ*0*j0j0*ZVZeVeVIV:Note[]IVRe2 ⋅=()[]*IVRe1tp⋅=∴Slide 10EE40 Fall 2009 Prof. Cheung()[]IVRe2tp ⋅=∴Maximum Average Power TransferZs()+What’s the load impedance should be to getthe maximum power transferred from the source tthl d?()ZL()tvs-ldto the load?()tvLPower consumption on the loadsourceload()[]*LLLIVRe21tp ⋅=Z*VssLLLVZZZV+=()*sLs*LZZVI+=andTherefore,()[]2s2sLL2s2sLLLVZZZRe21VZZZRe21tp+=+=Slide 11EE40 Fall 2009 Prof. CheungHowever, impedance is complex, both real and imaginary parts need to beconsidered to optimize the power.Max. Power Transfer Cont.LLLjXRZ +=andsssjXRZ+=()()()2s2sL2sLLLVXXRRR21tp+++=Since the numerator doesn’t have the X components, to maximize the averagepower, the term contains the X components in the denominator should be 0.Th fXX()2LVR1tpdTherefore,sLXX−=()()s2sLLLVRR2tp+=and()LtpdIf t kRR*ZZConjugate ofZgives max power transfer()0=LLdRtpdIf takesLRR=⇒Slide 12EE40 Fall 2009 Prof. Cheung sLZZ=∴Conjugate of Zsgives max. power transferOther Power RelationshipsFor sinusoid v(t) and i(t) :()()()()φ+ω=θ+ω=tcosItitcosVtvm()()φ+ω=tcosItim()[][])cos(IVIV1mm)(imm*φ−θφθ()[][]2)cos(IVeRe2IVIVRe21tp mm)(imm*φθ==⋅=∴φ−θ())cos(IVtp rmsrmsφ−θ••=orSlide 13EE40 Fall 2009 Prof. CheungOther Power quantities())cos(IVtp P rmsrmsφ−θ••==Power Factor PF= cos (θvoltage- θcurrent)Reactive Power A)sin(IVQ rmsrmsφ−θ••=Apparent Power 22rmsrmsQPIV AP+=•≡Slide 14EE40 Fall 2009 Prof. CheungAppendixSome useful complex number identities for phasors:1. []2Re*ZZZ+=2ABare complex numbers thenZ is a complex number, then()***ABBA=2.A, Bare complex numbers, then()ABBA=3.[] [][]*Re21ReRe BABA ⋅=⋅If θωjtjeeAA0= and φωjtjeeBB0=, thenSlide 15EE40 Fall 2009 Prof. CheungAppendixProof of identity 3.[][]422ReRe******ABBABAABBBAABA+++=+⋅+=⋅[][]422Now examine each term.()()∫∫===++TtjTjtjjeeBAdteeBAAB20020001ωφθωφθ=Tπω2∫∫eTdteeBATAB00000T()∫==−+−TtjjdteeBATBA0200**01ωφθ∫T0() ()BAeBAdteBATBAjTj *00000*1===−−∫θφθφ**ABAB =[] []()[][]******14Re244ReRe ABABABABBABA =+=+=∴Slide 16EE40 Fall 2009 Prof. Cheung[]*Re21


View Full Document

Berkeley ELENG 40 - Lec 11 Phasors and Power

Documents in this Course
Lecture 3

Lecture 3

73 pages

Lecture 1

Lecture 1

84 pages

Guide 4

Guide 4

8 pages

Diodes

Diodes

7 pages

Quiz

Quiz

9 pages

Load more
Download Lec 11 Phasors and Power
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lec 11 Phasors and Power and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lec 11 Phasors and Power 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?