DOC PREVIEW
CMU CS 15213 - Hydraulic System Modeling

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

To be presented at the IEEE Intelligent Robot Systems Conference (IROS), Victoria, B.C., Canada, October 1998AbstractHydraulic machines used in a number of applications arehighly non-linear systems. Besides the dynamic couplingbetween the different links, there are significant actuator non-linearities due to the inherent properties of the hydraulic sys-tem. Automation of such machines requires the robotic machineto be atleast as productive as a manually operated machine,which in turn make the case for performing tasks optimallywith respect to an objective function (say) composed of a com-bination of time and fuel usage. Optimal path computationrequires fast machine models in order to be practically usable.This work examines the use of memory-based learning inconstructing the model of a 25-ton hydraulic excavator. Thelearned actuator model is used in conjunction with a linkagedynamic model to construct a complete excavator model whichis much faster than a complete analytical model. Test resultsshow that the approach effectively captures the interactionsbetween the different actuators.I. IntroductionHydraulic machines are commonly used in the areas of con-struction, mining and excavation. A typical machine used fre-quently in excavation - a hydraulic excavator (HEX) - is shownin Fig 1. Today attention is being focused on automating taskssuch as mass excavation and continuous mining where a dig-ging machine fills a bucket with material from a pile or a rockface, transports the bucket load to a waiting truck or conveyerbelt, and dumps the load in the truckbed/belt. Such tasks areideal candidates for automation since they are repetitive andthere exists room for enhancing productivity.Fig. 1. A typical excavating machine (Hydraulic Excavator)BoomCylindersStick CylinderBucketCylinderSwing JointAutomation can be a practical reality only if the roboticmachine is more productive than a manually operated one. Thisrequires that tasks be performed optimally to minimize a com-bination of performance objectives such as time per bucketload and fuel consumption. Optimal motion computation inturn requires a robot model which defines the constraint surfacefor the path optimization problem. A complete robot modelconsists of an actuator model and a linkage dynamics model.While the linkage dynamics for an excavator robot can be mod-eled using the well-known Newton-Euler equations, the actua-tor model is rather complex and non-linear. The non-linearityis due to the highly non-linear hydraulic system, and also dueto the power coupling between the actuators, which are pow-ered by a limited power source (i.e. the engine). An analyticalactuator model for an excavator is therefore computationallyexpensive.This paper describes the construction of a fast hydraulic sys-tem and actuator model for an excavator through memory-based learning. The learned model has been used to construct acomplete excavator model which includes the second-orderlinkage dynamics in addition to the actuator model. This com-plete model is about an order of magnitude faster than a com-parable analytical model.The following notation will be used through the rest of thisdocument: “Linkage dynamic model” refers to the system ofNewton-Euler equations that describe the dynamics of theexcavator’s links, while an “actuator model” describes the actu-ator characteristics. The term “machine model” refers to a com-plete excavator model which includes both of the above.Although optimal motion planning can be performed withslower machine models, fast models raise the possibility of per-forming the optimal path computation as needed, even onboardthe robot, rather than pre-computing it off-line. An optimalmotion computation may require a few thousand evaluations/simulations, and the speed difference between a slow and a fastmodel could translate into the optimization taking a few daysversus a few hours.Fast machine models are also needed for collision avoidancethrough predictive simulation of motion commands before theyare executed. The expected trajectory through space can bescanned for collisions and the robot stopped in time in the eventof a predicted collision. (The use of predictive models is neces-sary when the masses are large and/or the velocities are highsince the dynamics of the system can make the response quitedifferent from a linear extrapolation of the velocity [5])The use of machine learning techniques to learn robotdynamics is not new. Neural networks that learn the dynamicequations of a robot manipulator ([2][3]) have been used inHydraulic System Modeling through Memory-based LearningMurali Krishna, John BaresThe Robotics InstituteCarnegie Mellon UniversityPittsburgh, PA - 15213model-based controllers. In [4] a neural network was used tolearn the error between an analytical dynamic model and actualmachine behavior during operation of the controller. Thislearned error function was used to improve controller perfor-mance. Although all the above cited researchers describe howneural networks improved controller performance, they do notdescribe how well the neural network learned the dynamicmodel. This is probably because their goal was to improve con-troller performance and not learn the dynamic model. In [8]McDonell et al. describe the construction of an analytical pneu-matic cylinder model, which was used to improve the controlby modelling the non-linearities inherent in pneumatic actua-tors. However, their pneumatic robot does not encounter anyflow limitations (and hence actuator interactions of the typeseen in a typical hydraulic machine) due the presence of a largeenough reservoir of high-pressure air.In [9] Singh et al. use a simple approach to handle the flowdistribution between multiple hydraulic cylinders on a hydrau-lic machine. They assume that the circuit with a valve closestto the pump gets all the flow it requires, and the remaining flowis distributed among the rest. This approach is valid when theinteracting cylinders have very different force loads, but notwhen the cylinders have similar force loads.The rest of the paper is organized as follows. Sec II gives abrief description of the structure of the equations involved in acomplete analytical model, to introduce the reader to the natureof such a problem. The following section (Sec III) describes thememory-based learning approach used to learn the actuatormodel. The results of the learning exercise are described inSec IV followed by some conclusions in


View Full Document

CMU CS 15213 - Hydraulic System Modeling

Documents in this Course
lecture

lecture

14 pages

lecture

lecture

46 pages

Caches

Caches

9 pages

lecture

lecture

39 pages

Lecture

Lecture

36 pages

Lecture

Lecture

45 pages

Lecture

Lecture

56 pages

lecture

lecture

11 pages

lecture

lecture

9 pages

Lecture

Lecture

36 pages

Lecture

Lecture

37 pages

Exam

Exam

16 pages

Lecture

Lecture

10 pages

Lecture

Lecture

43 pages

Lecture

Lecture

8 pages

Lecture

Lecture

8 pages

Lecture

Lecture

36 pages

Lecture

Lecture

43 pages

Lecture

Lecture

12 pages

Lecture

Lecture

37 pages

Lecture

Lecture

6 pages

Lecture

Lecture

40 pages

coding

coding

2 pages

Exam

Exam

17 pages

Exam

Exam

14 pages

Lecture

Lecture

29 pages

Lecture

Lecture

34 pages

Exam

Exam

11 pages

Lecture

Lecture

9 pages

Lecture

Lecture

37 pages

Lecture

Lecture

36 pages

lecture

lecture

46 pages

Lecture

Lecture

33 pages

Lecture

Lecture

57 pages

Lecture

Lecture

32 pages

Lecture

Lecture

46 pages

Lecture

Lecture

40 pages

Lecture

Lecture

11 pages

Lecture

Lecture

6 pages

Lecture

Lecture

43 pages

Lecture

Lecture

12 pages

Lecture

Lecture

18 pages

Exam

Exam

10 pages

Lecture

Lecture

45 pages

Lecture

Lecture

37 pages

Exam

Exam

24 pages

class09

class09

21 pages

class22

class22

37 pages

class20

class20

30 pages

class27

class27

33 pages

class25

class25

21 pages

class04

class04

31 pages

Lecture

Lecture

59 pages

class01a

class01a

14 pages

class12

class12

45 pages

class29

class29

33 pages

Lecture

Lecture

39 pages

Lecture

Lecture

6 pages

class03

class03

34 pages

lecture

lecture

42 pages

Lecture

Lecture

40 pages

Lecture

Lecture

47 pages

Exam

Exam

19 pages

R06-B

R06-B

25 pages

class17

class17

37 pages

class25

class25

31 pages

Lecture

Lecture

15 pages

final-f06

final-f06

17 pages

Lecture

Lecture

9 pages

lecture

lecture

9 pages

Exam

Exam

15 pages

Lecture

Lecture

22 pages

class11

class11

45 pages

lecture

lecture

50 pages

Linking

Linking

37 pages

Lecture

Lecture

64 pages

Integers

Integers

40 pages

Exam

Exam

11 pages

Lecture

Lecture

37 pages

Lecture

Lecture

44 pages

Lecture

Lecture

37 pages

Lecture

Lecture

9 pages

Lecture

Lecture

37 pages

Lecture

Lecture

45 pages

Final

Final

25 pages

lecture

lecture

9 pages

Lecture

Lecture

30 pages

Lecture

Lecture

16 pages

Final

Final

17 pages

Lecture

Lecture

8 pages

Exam

Exam

11 pages

Lecture

Lecture

47 pages

Lecture

Lecture

9 pages

lecture

lecture

39 pages

Exam

Exam

11 pages

lecture

lecture

41 pages

lecture

lecture

37 pages

Lecture

Lecture

59 pages

Lecture

Lecture

45 pages

Exam 1

Exam 1

18 pages

Lecture

Lecture

41 pages

Lecture

Lecture

32 pages

Lecture

Lecture

30 pages

Lecture

Lecture

9 pages

Lecture

Lecture

9 pages

Lecture

Lecture

15 pages

Lecture

Lecture

11 pages

Lecture

Lecture

9 pages

Lecture

Lecture

34 pages

Lecture

Lecture

40 pages

Lecture

Lecture

4 pages

Lecture

Lecture

46 pages

Lecture

Lecture

8 pages

Lecture

Lecture

65 pages

Lecture

Lecture

38 pages

Lecture

Lecture

35 pages

Lecture

Lecture

8 pages

Lecture

Lecture

34 pages

Lecture

Lecture

8 pages

Exam

Exam

13 pages

Lecture

Lecture

43 pages

Lecture

Lecture

9 pages

Lecture

Lecture

12 pages

Lecture

Lecture

9 pages

Lecture

Lecture

34 pages

Lecture

Lecture

43 pages

Lecture

Lecture

7 pages

Lecture

Lecture

45 pages

Lecture

Lecture

24 pages

Lecture

Lecture

47 pages

Lecture

Lecture

12 pages

Lecture

Lecture

20 pages

Lecture

Lecture

9 pages

Exam

Exam

11 pages

Lecture

Lecture

52 pages

Lecture

Lecture

20 pages

Exam

Exam

11 pages

Lecture

Lecture

35 pages

Lecture

Lecture

47 pages

Lecture

Lecture

18 pages

Lecture

Lecture

30 pages

Lecture

Lecture

59 pages

Lecture

Lecture

37 pages

Lecture

Lecture

22 pages

Lecture

Lecture

35 pages

Exam

Exam

23 pages

Lecture

Lecture

9 pages

Lecture

Lecture

22 pages

class12

class12

32 pages

Lecture

Lecture

8 pages

Lecture

Lecture

39 pages

Lecture

Lecture

44 pages

Lecture

Lecture

38 pages

Lecture

Lecture

69 pages

Lecture

Lecture

41 pages

Lecture

Lecture

12 pages

Lecture

Lecture

52 pages

Lecture

Lecture

59 pages

Lecture

Lecture

39 pages

Lecture

Lecture

83 pages

Lecture

Lecture

59 pages

class01b

class01b

17 pages

Exam

Exam

21 pages

class07

class07

47 pages

Lecture

Lecture

11 pages

Odyssey

Odyssey

18 pages

multicore

multicore

66 pages

Lecture

Lecture

6 pages

lecture

lecture

41 pages

lecture

lecture

55 pages

lecture

lecture

52 pages

lecture

lecture

33 pages

lecture

lecture

46 pages

lecture

lecture

55 pages

lecture

lecture

17 pages

lecture

lecture

49 pages

Exam

Exam

17 pages

lecture

lecture

56 pages

Exam 2

Exam 2

16 pages

Exam 2

Exam 2

16 pages

Notes

Notes

37 pages

Lecture

Lecture

40 pages

Lecture

Lecture

36 pages

Lecture

Lecture

43 pages

Lecture

Lecture

25 pages

Exam

Exam

13 pages

Lecture

Lecture

32 pages

Lecture

Lecture

12 pages

Lecture

Lecture

58 pages

Lecture

Lecture

29 pages

Lecture

Lecture

59 pages

Lecture

Lecture

41 pages

Lecture

Lecture

50 pages

Exam

Exam

17 pages

Lecture

Lecture

29 pages

Lecture

Lecture

44 pages

Lecture

Lecture

41 pages

Lecture

Lecture

52 pages

Lecture

Lecture

40 pages

Lecture

Lecture

33 pages

lecture

lecture

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

29 pages

Lecture

Lecture

39 pages

Lecture

Lecture

9 pages

Lecture

Lecture

29 pages

Lecture

Lecture

8 pages

Lecture

Lecture

43 pages

Lecture

Lecture

43 pages

Lecture

Lecture

75 pages

Lecture

Lecture

55 pages

Exam

Exam

12 pages

Lecture

Lecture

43 pages

Lecture

Lecture

35 pages

lecture

lecture

36 pages

Exam

Exam

33 pages

lecture

lecture

56 pages

lecture

lecture

64 pages

lecture

lecture

8 pages

Exam

Exam

14 pages

Lecture

Lecture

43 pages

Lecture

Lecture

36 pages

lecture

lecture

56 pages

lecture

lecture

75 pages

lecture

lecture

36 pages

Lecture

Lecture

50 pages

Lecture

Lecture

45 pages

Lecture

Lecture

13 pages

Exam

Exam

23 pages

Lecture

Lecture

10 pages

Lecture

Lecture

48 pages

Lecture

Lecture

83 pages

lecture

lecture

57 pages

Lecture

Lecture

33 pages

Lecture

Lecture

39 pages

Lecture

Lecture

33 pages

lecture

lecture

54 pages

Lecture

Lecture

30 pages

Exam

Exam

13 pages

Lecture

Lecture

36 pages

Lecture

Lecture

40 pages

Exam

Exam

17 pages

Lecture

Lecture

9 pages

Exam

Exam

15 pages

Lecture

Lecture

44 pages

Lecture

Lecture

34 pages

Lecture

Lecture

24 pages

Lecture

Lecture

29 pages

class12

class12

43 pages

lecture

lecture

43 pages

class22

class22

22 pages

R06-B

R06-B

25 pages

class01b

class01b

19 pages

lecture

lecture

29 pages

lab1

lab1

8 pages

Caches

Caches

36 pages

lecture

lecture

55 pages

Lecture,

Lecture,

37 pages

Integers

Integers

40 pages

Linking

Linking

38 pages

lecture

lecture

45 pages

Lecture

Lecture

61 pages

Linking

Linking

33 pages

lecture

lecture

40 pages

lecture

lecture

40 pages

Lecture

Lecture

32 pages

lecture

lecture

48 pages

lecture

lecture

44 pages

Exam

Exam

11 pages

Lecture

Lecture

31 pages

Lecture

Lecture

46 pages

Lecture

Lecture

40 pages

Lecture

Lecture

40 pages

Exam

Exam

12 pages

Lecture

Lecture

42 pages

Lecture

Lecture

36 pages

Lecture

Lecture

45 pages

Lecture

Lecture

41 pages

Lecture

Lecture

13 pages

Lecture

Lecture

35 pages

Lecture

Lecture

20 pages

Final

Final

19 pages

Lecture

Lecture

33 pages

Lecture

Lecture

50 pages

Lecture

Lecture

33 pages

Lecture

Lecture

27 pages

Lecture

Lecture

6 pages

Exam

Exam

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

23 pages

Lecture

Lecture

43 pages

Lecture

Lecture

32 pages

Lecture

Lecture

52 pages

Lecture

Lecture

37 pages

Lecture

Lecture

36 pages

Lecture

Lecture

34 pages

Lecture

Lecture

40 pages

Lecture

Lecture

15 pages

lecture

lecture

21 pages

Lecture

Lecture

58 pages

Lecture

Lecture

49 pages

Lecture

Lecture

36 pages

Lecture

Lecture

11 pages

Lecture

Lecture

12 pages

Lecture

Lecture

58 pages

Lecture

Lecture

33 pages

Exam

Exam

15 pages

Lecture

Lecture

35 pages

Lecture

Lecture

10 pages

Lecture

Lecture

25 pages

Lecture

Lecture

31 pages

Lecture

Lecture

24 pages

Lecture

Lecture

34 pages

Lecture

Lecture

50 pages

lecture

lecture

35 pages

Lecture

Lecture

11 pages

Lecture

Lecture

39 pages

Lecture

Lecture

45 pages

Lecture

Lecture

41 pages

exam1-f05

exam1-f05

11 pages

Lecture

Lecture

4 pages

Lecture

Lecture

17 pages

Exam

Exam

17 pages

malloc()

malloc()

12 pages

Lecture

Lecture

57 pages

Lecture

Lecture

30 pages

Lecture

Lecture

30 pages

Lecture

Lecture

47 pages

Lecture

Lecture

33 pages

Exam

Exam

12 pages

Lecture

Lecture

43 pages

Lectures

Lectures

33 pages

Lecture

Lecture

36 pages

lecture

lecture

33 pages

Exam

Exam

14 pages

Lecture

Lecture

43 pages

Lecture

Lecture

25 pages

Load more
Download Hydraulic System Modeling
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Hydraulic System Modeling and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Hydraulic System Modeling 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?