DOC PREVIEW
MSU ECE 410 - Ch7

This preview shows page 1-2-15-16-31-32 out of 32 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 32 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 32 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 32 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 32 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 32 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 32 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 32 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

CMOS Inverter: DC AnalysisInverter Voltage Transfer CharacteristicsInverter Voltage Transfer CharacteristicsNoise MarginSwitching ThresholdEffect of Transistor Size on VTCExampleCMOS Inverter: Transient AnalysisTransient ResponseFall TimeRise TimePropagation DelaySwitching Speed -ResistanceSwitching Speed -CapacitanceSwitching Speed -Local ModificationCMOS Power ConsumptionMulti-Input Gate Signal TransitionsSeries/Parallel Equivalent CircuitsNAND: DC AnalysisNAND Switching PointNOR: DC AnalysisNAND: Transient AnalysisNOR: Transient AnalysisNAND/NOR PerformanceNAND/NOR Transient SummaryPerformance ConsiderationsTiming in Complex Logic GatesSizing in Complex Logic GatesTiming in Multi-Gate CircuitsPower in Multi-Input Logic GatesTiming Analysis of Transmission GatesPass TransistorECE 410, Prof. A. Mason Lecture Notes 7.1CMOS Inverter: DC Analysis• Analyze DC Characteristics of CMOS Gates by studying an Inverter• DC Analysis– DC value of a signal in static conditions• DC Analysis of CMOS Inverter–Vin, input voltage– Vout, output voltage– single power supply, VDD– Ground reference–find Vout = f(Vin)• Voltage Transfer Characteristic (VTC)– plot of Vout as a function of Vin– vary Vin from 0 to VDD– find Vout at each value of VinECE 410, Prof. A. Mason Lecture Notes 7.2Inverter Voltage Transfer Characteristics• Output High Voltage, VOH– maximum output voltage• occurs when input is low (Vin = 0V)• pMOS is ON, nMOS is OFF• pMOS pulls Vout to VDD–VOH= VDD• Output Low Voltage, VOL– minimum output voltage• occurs when input is high (Vin = VDD)• pMOS is OFF, nMOS is ON• nMOS pulls Vout to Ground–VOL= 0 V•Logic Swing– Max swing of output signal•VL= VOH-VOL•VL= VDDECE 410, Prof. A. Mason Lecture Notes 7.3Inverter Voltage Transfer Characteristics• Gate Voltage, f(Vin)–VGSn=Vin, VSGp=VDD-Vin• Transition Region (between VOHand VOL)–Vinlow•Vin< Vtn–Mnin Cutoff, OFF– Mp in Triode, Vout pulled to VDD•Vin> Vtn< ~Vout– Mn in Saturation, strong current– Mp in Triode, VSG& current reducing– Vout decreases via current through Mn– Vin = Vout (mid point) ≈ ½VDD– Mn and Mp both in Saturation– maximum current at Vin = Vout–Vinhigh• Vin > ~Vout, Vin < VDD - |Vtp|– Mn in Triode, Mp in Saturation• Vin > VDD - |Vtp|–Mnin Triode, Mp in Cutoff+VGSn-+VSGp-Vin < VILinput logic LOWVin > VIHinput logic HIGH•Drain Voltage, f(Vout)–VDSn=Vout, VSDp=VDD-VoutECE 410, Prof. A. Mason Lecture Notes 7.4Noise Margin•Input Low Voltage, VIL– Vin such that Vin < VIL= logic 0– point ‘a’ on the plot•where slope,• Input High Voltage, VIH– Vin such that Vin > VIH= logic 1– point ‘b’ on the plot•where slope =-1• Voltage Noise Margins– measure of how stable inputs are with respect to signal interference–VNMH= VOH-VIH= VDD - VIH–VNML= VIL-VOL= VIL– desire large VNMHand VNMLfor best noise immunity1−=∂∂VoutVinECE 410, Prof. A. Mason Lecture Notes 7.5Switching Threshold• Switching threshold = point on VTC where Vout = Vin– also called midpoint voltage, VM– here, Vin = Vout = VM• Calculating VM–at VM, both nMOS and pMOS in Saturation– in an inverter, IDn= IDp, always!– solve equation for VM– express in terms of VM– solve for VMDptpSGpptnGSnntnGSnOXnDnIVVVVVVLWCI =−=−=−=222)(2)(2)(2ββμ22)(2)(2tpMDDptnMnVVVVV −−=−ββ⇒tpMDDtnMpnVVVVV −−=− )(ββpnpntntpMVVVDDVββββ++−=1ECE 410, Prof. A. Mason Lecture Notes 7.6Effect of Transistor Size on VTC•Recall• If nMOS and pMOS are same size–(W/L)n = (W/L)p–Coxn= Coxp(always)•If• Effect on switching threshold–if βn≈βpand Vtn = |Vtp|, VM= VDD/2, exactly in the middle• Effect on noise margin–if βn≈βp, VIHand VILboth close to VMand noise margin is goodLWknn'=βppnnpnLWkLWk⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=''ββpnpntntpMVVVDDVββββ++−=132orLWCLWCpnpoxppnoxnnpn≅=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=μμμμββ1, =⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=pnnppnthenLWLWββμμsince L normally min. size for all tx,can get betas equal by making Wp larger than WnECE 410, Prof. A. Mason Lecture Notes 7.7Example•Given– k’n = 140uA/V2, Vtn = 0.7V, VDD = 3V– k’p = 60uA/V2, Vtp = -0.7V•Find– a) tx size ratio so that VM= 1.5V–b) VMif tx are same sizetransition pushed loweras beta ratio increasesECE 410, Prof. A. Mason Lecture Notes 7.8CMOS Inverter: Transient Analysis• Analyze Transient Characteristics of CMOS Gates by studying an Inverter• Transient Analysis– signal value as a function of time• Transient Analysis of CMOS Inverter– Vin(t), input voltage, function of time– Vout(t), output voltage, function of time– VDD and Ground, DC (not function of time)– find Vout(t) = f(Vin(t))• Transient Parameters–output signal rise and fall time– propagation delayECE 410, Prof. A. Mason Lecture Notes 7.9Transient Response• Response to step change in input– delays in output due to parasitic R & C•Inverter RC Model– Resistances–Rn= 1/[βn(VDD-Vtn)]–Rp= 1/[βn(VDD-|Vtp|)]–Output Cap. (only output is important)•CDn(nMOS drain capacitance)–CDn= ½ Cox WnL + CjADnbot+ CjswPDnsw•CDp(pMOS drain capacitance)–CDp= ½ Cox WpL + CjADpbot+ CjswPDpsw• Load capacitance, due to gates attached at the output–CL= 3 Cin = 3 (CGn+ CGp), 3 is a “typical” load• Total Output Capacitance–Cout= CDn+ CDp+ CL+Vout-CLterm “fan-out” describes# gates attached at outputECE 410, Prof. A. Mason Lecture Notes 7.10Fall Time• Fall Time, tf– time for output to fall from ‘1’ to ‘0’–derivation:• initial condition, Vout(0) = VDD• solution– definition•tfis time to fall from90% value [V1,tx] to 10% value [V0,ty]•tf= 2.2 τnnoutoutoutRVtVCi =∂∂−=ntDDeVtVoutτ−=)(τn= RnCouttime constant⎟⎠⎞⎜⎝⎛=VoutVtDDnlnτ⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=DDDDDDDDnVVVVt9.0ln1.0lnτECE 410, Prof. A. Mason Lecture Notes 7.11Rise Time•Rise Time, tr– time for output to rise from ‘0’ to ‘1’–derivation:• initial condition, Vout(0) = 0V• solution– definition•tfis time to rise from10% value [V0,tu] to 90% value [V1,tv]•tr= 2.2 τp• Maximum Signal Frequency–fmax= 1/(tr+ tf)• faster than this and the output can’t settleτp= RpCouttime constantpoutDDoutoutRVVtVCi−=∂∂=⎥⎦⎤⎢⎣⎡−=−ptDDeVtVoutτ1)(ECE 410, Prof. A. Mason Lecture Notes 7.12Propagation Delay• Propagation Delay,


View Full Document

MSU ECE 410 - Ch7

Documents in this Course
hw4-s08

hw4-s08

2 pages

Exam 1

Exam 1

5 pages

lab3

lab3

2 pages

lab4

lab4

4 pages

Lab 5

Lab 5

4 pages

Ch12

Ch12

34 pages

lab5

lab5

4 pages

lab2

lab2

2 pages

lab7

lab7

3 pages

Ch11

Ch11

43 pages

Lab 6

Lab 6

4 pages

lab2

lab2

3 pages

lab7

lab7

2 pages

Lab 4

Lab 4

3 pages

lab1

lab1

3 pages

Ch3-5

Ch3-5

69 pages

Load more
Download Ch7
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Ch7 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Ch7 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?