DOC PREVIEW
GT ECE 2030 - CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-1NUMBERS & ARITHMETIC•CHAPTER VCHAPTER VNUMBER SYSTEMS AND ARITHMETICR.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-2NUMBER SYSTEMSRADIX-R REPRESENTATIONNUMBERS & ARITHMETIC•NUMBER SYSTEMS•Decimal number expansion•Binary number representation•Hexadecimal number representation73625107104×()3103×()6102×()2101×()5100×()++++=101102124×()023×()122×()121×()020×()++++2210==3E4B8163164×()14 163×()4162×()11 161×()8160×()++++= 25516010=R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-3NUMBER SYSTEMSDECIMAL REPRESENTATIONNUMBERS & ARITHMETIC•NUMBER SYSTEMS-NUMBER REPRES.103102101100101–102–103–104–73 25.438573625.4385107104×()3103×()6102×()2101×()5100×()++++=6104105105–00 4101–×()3102–×()8103–×()5104–×()++++... ...73625.438510Radix-10 RepresentationR.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-4NUMBER SYSTEMSBINARY REPRESENTATIONNUMBERS & ARITHMETIC•NUMBER SYSTEMS-NUMBER REPRES.-DECIMAL REPRES.LSBMSB2322212021–22–23–24–10 10.001110110.00112124×()023×()122×()121×()020×()++++=1242525–00 021–×()022–×()123–×()124–×()++++... ...10110.00112 22.187510=Radix-2 RepresentationR.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-5NUMBER SYSTEMSOCTAL REPRESENTATIONNUMBERS & ARITHMETIC•NUMBER SYSTEMS-NUMBER REPRES.-DECIMAL REPRES.-BINARY REPRES.8382818081–82–83–84– 26 16.173126516.17318284×()683×()582×()181×()680×()++++=5848585–00 181–×()782–×()383–×()184–×()++++... ...26516.17318 11598.2410=Radix-8 RepresentationR.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-6NUMBER SYSTEMSHEXADECIMAL REPRES.NUMBERS & ARITHMETIC•NUMBER SYSTEMS-DECIMAL REPRES.-BINARY REPRES.-OCTAL REPRES.163162161160161–162–163–164–19 D6.F41119AD6.F411161164×()9163×()A162×()D161×()6160×()++++=A164165165–00 F161–×()4162–×()1163–×()1164–×()++++... ...19AD6.F41116 105174.9510≈Radix-16 RepresentationR.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-7NUMBER SYSTEMSBINARY <-> HEXADECIMALNUMBERS & ARITHMETIC•NUMBER SYSTEMS-BINARY REPRES.-OCTAL REPRES.-HEXADECIMAL REPRES.BINARY <-> HEXADECIMALGroup binary by 4 bits from radix point00002 = 01600012 = 11600102 = 21600112 = 31601002 = 41601012 = 51601102 = 61601112 = 71610002 = 81610012 = 91610102 = 10 (A16)10112 = 11 (B16)11002 = 12 (C16)11012 = 13 (D16)11102 = 14 (E16)11112 = 15 (F16)10 1010 0110.1100 012 = 2A6.C4160111 10112 = 7B16Examples:A67BBINARY -> HEXADECIMALC 42R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-8NUMBER SYSTEMSBINARY <-> OCTALNUMBERS & ARITHMETIC•NUMBER SYSTEMS-BINARY REPRES.-OCTAL REPRES.-BINARY<->HEXADECIMALBINARY <-> OCTALGroup binary bits by 3 from LSB0002 = 080012 = 180102 = 280112 = 381002 = 481012 = 581102 = 681112 = 7810 100 1102 = 246810 101 111 011.011 112 = 2573.3682BINARY -> OCTALExamples:465732 3 6R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-9NUMBER SYSTEMSBINARY -> DECIMALNUMBERS & ARITHMETIC•NUMBER SYSTEMS-OCTAL REPRES.-BINARY<->HEXADECIMAL-BINARY<->OCTAL•Perform radix-2 expansion• Multiply each bit in the binary number by 2 to the power of its place. Then sum all of the values to get the decimal value.101112124×()023×()122×()121×()120×()++++2310==Examples:10110.00112124×()023×()122×()121×()020×()++++= 021–×()022–×()123–×()124–×()++++ 22.187510=R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-10NUMBER SYSTEMSDECIMAL -> BINARYNUMBERS & ARITHMETIC•NUMBER SYSTEMS-BINARY<->HEXADECIMAL-BINARY<->OCTAL-BINARY->DECIMALExample:41 mod 21=20 mod 20=10 mod 20=5 mod 21=2 mod 20=1 mod 21=LSBMSBTherefore41.82812510101001.1101012=Convert41.828125100.828125 2×1.65625=0.65625 2×1.3125=0.3125 2×0.625=0.625 2×1.25=0.25 2×0.5=0.5 2×1.0=MSBLSB•Integer part:• Modulo division of decimal integer by 2 to get each bit, starting with LSB.•Fraction part:• Multiplication decimal fraction by 2 and collect resulting integers, starting with MSB.R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-11NUMBER SYSTEMSFLOATING POINT NUMBERSNUMBERS & ARITHMETIC•NUMBER SYSTEMS-BINARY<->HEXADECIMAL-BINARY->DECIMAL-DECIMAL->BINARY•Floating point numbers can be represented with a sign bit, a fraction (often referred to as the mantissa), and an exponent.• Example 1: , where the sign is negative, the fraction is and the exponent is .• Example 2: , where the sign is positive, the fraction is , and the exponent is .•Sample IEEE Floating-Point Formats267.426–0.267426 103×–=0.267426 30101011.1001 0.1010111 26×=0.1010111 011018 23111 52se f64-bit32-bitse fR.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-12BINARY NUMBERSUNSIGNED INTEGERNUMBERS & ARITHMETIC•NUMBER SYSTEMS-DECIMAL->BINARY-POWERS OF 2-FLOATING POINT•The range for an -bit radix- unsigned integer is• Example: For a 16-bit binary unsigned integer, the range iswhich has a binary representation of 0000 0000 0000 0000 = 0 0000 0000 0000 0001 = 1 0000 0000 0000 0010 = 2 . . . 1111 1111 1111 1110 = 65534 1111 1111 1111 1111 = 65535nr0r10n1–,[]02161–,[]0 65535,[]=R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-13BINARY NUMBERSSIGNED INTEGERS (1)NUMBERS & ARITHMETIC•NUMBER SYSTEMS•BINARY NUMBERS-UNSIGNED INTEGERS•The range for an -bit radix- signed integer is• The most-significant bit is used as a sign bit, where 0 indicates a positive integer and 1 indicates a negative integer.Example: For a 16-bit binary signed integer, the range isnrr10n1––r10n1–1–,[]216 1––216 1–1–,[]32768 32767,–[]=R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-14BINARY NUMBERSSIGNED INTEGERS (2)NUMBERS & ARITHMETIC•NUMBER SYSTEMS•BINARY NUMBERS-UNSIGNED INTEGERS-SIGNED INTEGERS•There are a number of different representations for signed integers, each which has its own advantage• Signed-magnitude representation:• 1010 0001 0110 1111• Signed-1’s complement representation:• 1101 1110 1001 0000• Signed-2’s complement representation:• 1101 1110 1001 0001•The above examples are all the same number, .855910–R.M. Dansereau; v.1.0INTRO. TO COMP. ENG.CHAPTER V-15BINARY NUMBERSSIGNED-MAGNITUDENUMBERS & ARITHMETIC•NUMBER SYSTEMS•BINARY NUMBERS-UNSIGNED INTEGERS-SIGNED INTEGERS•The signed-magnitude binary integer representation is just like the unsigned representation with the addition of a sign bit.• For instance, using 8-bits, the number can be represented as the7-bit


View Full Document

GT ECE 2030 - CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

Documents in this Course
Load more
Download CHAPTER V NUMBER SYSTEMS AND ARITHMETIC
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view CHAPTER V NUMBER SYSTEMS AND ARITHMETIC and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view CHAPTER V NUMBER SYSTEMS AND ARITHMETIC 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?