DOC PREVIEW
Berkeley ELENG 140 - A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN

This preview shows page 1-2-3-26-27-28 out of 28 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

5.4: A 5GHz CMOS Transceiverfor IEEE 802.11a Wireless LANDavid Su, Masoud Zargari, Patrick Yue,Shahriar Rabii, David Weber, Brian Kaczynski,Srenik Mehta, Kalwant Singh, Sunetra Mendis,and Bruce Wooley1Atheros Communications, Sunnyvale, California1Stanford University, Stanford, CaliforniaOutline❑ Introduction: 802.11a Wireless LAN❑ Architecture❑ Radio Design• Transmitter• Receiver• Frequency Synthesizer❑ SummaryIEEE 802.11a WLAN■ Frequency: 5 GHz UNII (Unlicensed NationalInformation Infrastructure)■ Total UNII Bandwidth: 300 MHz (> IEEE 802.11b)■ Modulation: OFDM(Orthogonal Frequency Division Multiplexing)+ BPSK / QPSK / 16QAM / 64QAM■ Data Rate: 6 - 54 Mbps5.15G 5.25G 5.35G5.725G 5.825G40mW200mW800mWSpectral-Efficient Modulation■ 64-QAM (Quadrature Amplitude Modulation)— Large signal to noise ratio > 30dB• Phase noise• I/Q mismatch■OFDM (Orthogonal Frequency Division Mux)— Large peak to average power ratio of or17dB• TX: large power backoff• RX: large dynamic range• Some signal clipping can be tolerated Requires High Linearity52ArchitectureArchitecture + –DirectConversion- No off-chip IF filter- Single synthesizer- LO leakage- LO pulling- Quadrature LORF- DC offsetTraditionalSuperheterodyne- Low LO leakage- Weak LO pulling- No quadrature LO- Design flexibility- Off-chip IF filter- Two synthesizersDual conversion with 1GHz sliding IFRadio TransceiverRx_outSynthesizerControl5GHzReceiverTx_inTransmitterDual Transmit Conversion■ Radio Frequency (RF) ≠ Local Oscillator (LO)• LO leakage is out of band• LO pulling by power amplifier is reduced■Sliding Intermediate Frequency (IF):• Single synthesizer• Excellent 1 GHz quadrature for good transmit imagerejection■Double Image-reject mixers• Avoid IF filtering of sidebandLOIFLORF4---------------=Freq(Hz)LORF1G 5G4GdcLOIFTransmitter Block DiagramRF_OUTLOIF(I)PALORF(I)LORF(Q)LOIF(Q)LOIF(I)TX_ITX_Q5 GHzDual Receive Conversion■ No external IF filtering■ Channel selection at Baseband with passiveLC filtering■ Very high IF of 1GHz• 3GHz image is 2GHz away from 5GHz signal• Inherent bandpass filtering of 3GHz: –23dBc• RF mixer: 5-4 = 1GHz (IF) and 5+4 = 9GHz• No image-reject mixersFreq(Hz)fRFfIF1G 3G 5G4GdcLORFLOIFLNALOIF (Q)PGADACDACRF_INRX_IRX_QOffsetPGAoff-chipControlReceiver Block Diagram5GHzLC LPFoff-chipLC LPFLORFLOIF (I)Synthesizer■ Single synthesizer with sliding IF:■ Divide-by-four generates quadrature LOIF• Excellent I/Q matching■P+/N-well varactor■ Frequency Plan:LOIFLORF4---------------=RF 5.160 to 5.340 GHz 10 MHz spacingLORF4.128 to 4.272 GHz 8 MHz spacingLOIF1.032 to 1.068 GHz 2 MHz spacingSynthesizer Block DiagramLOIFLORFPFDCPVCORC LPF8MHz3216/17Decoder(4GHz)(1GHz)Channel Select4off-chip5GHz CMOS RF Design■ Advantages:• Low-cost, high-yield• Multi-layer interconnect makes decent inductors• High-level of integration supports sophisticateddigital signal processing*■Challenges:• 5 GHz: 0.25µm + narrowband with inductors• No high-Q BPF: architecture + dynamic range• Process/Temp Variation: DSP algorithms• Noise/Power performance limitations* J. Thomson et al, ISSCC 2002, Paper 7.2Power Amplifier Design■ Large peak to average ratio (PAR) of or 17dB■ Signal peaks are infrequent: 0.25dB SNRdegradation when PAR reduced to 6dB for16-QAM*.■ Implications:• Poor power efficiency• With 6dB PAR, to obtain 40mW (16dBm) requiresPsat of ~22dBm or 160mW• With 17dB PAR, to obtain 40mW (16dBm) requiresPsat of ~33dBm or 2W*Van Nee & Prasad, OFDM for Wireless Multimedia Communications,Artech House, 200052Power Amplifier TopologyOutputBiasL3InputL2*M2M3C2L4*Vpa = 3.3V■ Class A operation■ Cascoded• 3.3V supply voltage• Stability■Capacitive Level-shift• Metal-2,3,4,5 stacks■Inductive loads■ Differential• Off-chip balun* C.P. Yue and S.S. Wong, IEEE JSSC, May 1998Power Amplifier SchematicVin+Vin-Vpa=3.3VL1pC1pVout+BiasL3pBiasL2pM2pM3pC2pL4pL1nC1nVout-BiasL3nBiasL2nM2nM3nC2nL4nPSAT= 22 dBmMeasured BPSK OFDM Spectrum16.25MHzPOFDM = 17.8 dBm64QAM (300kHz) modulated signalMeasured Transmit ConstellationMeasured Transmit Output Power6 9 12 18 24 36 48 5412141618OFDM Output Power (dBm)Data Rate (Mbps)10Carrier Leak –29dBcSpectral Images –51dBcLNA SchematicReceiver NF: LNA to Baseband = 8dBVin+VoutM3M1Vin-M4M2Lsp LsnVddVin+ Vin-Vout- Vout+Vos+ Vos-offset controlR1R2R2VddBias_pBias_nBias_nProgrammable Baseband AmplifierVddMeasured Receiver Performance-30-90 -80 -70 -60 -50 -40 -20 -10 0-60-50-40-30-20-10010Min. GainMax. GainRF Input (dBm)IF Mixer Output (dBm)M1M2VcControlVoltage Controlled Oscillator (VCO)ControlFrequency (Hz)Phase Noise (dBc/Hz)1k 10k 100k 1M 10M–130–120–110–100–90Composite Phase Noise at 5GHz–80Die PhotographTxRxSynthBiasLogicMeasured PerformanceTX Output Power Level 22 dBmRX Chain Noise Figure 8 dBPhase Noise (∆f=1MHz) –112 dBc/HzSupply Voltages 2.5 V & 3.3 V I/OTX Chain Power Dissipation 790 mWRX Chain Power Dissipation 250 mWSynthesizer Power Dissipation 180 mWTechnology 0.25 µm 1P5M CMOSPackage 64-pin LPCCDie Size22 mm2Conclusions■ IEEE 802.11a radio transceiver in 0.25 µmstandard digital CMOS for 5-GHz WLAN■ No external IF filter:• TX: double image-reject mixers• RX: very high IF of 1GHz■Dual conversion with sliding IF: singlesynthesizer■ Integration of:• transmitter with 22dBm output power• receiver with 8dB noise figure• synthesizer with –112dBc/Hz (∆f=1MHz)Acknowledgement■ Support of the Wireless Team at Atheros fordesign, layout, and testing. In particular:H. Dieh, J. Kung, R. Popescu, A. Ong,J. Zheng, D. Nakahira, R. Subramanian,J. Kuskin, A. Dao, D. Johnson, C. Lee, L. Thon,P. Husted, W. McFarland, S. Wong, R. Bahr, T.Meng■ Assistance of TSMC. In particular: S. C. Wongand B. K.


View Full Document

Berkeley ELENG 140 - A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN

Documents in this Course
Load more
Download A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?