DOC PREVIEW
SC ANTH 101 - class_text_013

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Symposium: Water and Human Evolution, April 30th 1999, University Gent, Flanders, BelgiumProceedingsAustralopiths wading? Homo diving?http://allserv.rug.ac.be/~mvaneech/Symposium.htmlhttp://www.flash.net/~hydra9/marcaat.html Marc Verhaegen & Stephen Munro – 23 July 1999AbstractAsian pongids (orangutans) and African hominids (gorillas, chimpanzees and humans) split 14-10 million years ago, possibly in the Middle East, or elsewhere in Eurasia, where the great ape fossils of 12-8 million years ago display pongid and/or hominid features. In any case, it is likely that the ancestors of the African apes, australopithecines and humans, lived on the Arabian-African continent 8-6 million years ago, when they split into gorillas and humans-chimpanzees. They could have frequently waded bipedally, like mangrove proboscis monkeys, in the mangrove forests between Eurasia and Africa, and partly fed on hard-shelled fruits and oysters like mangrove capuchin monkeys: thick enamel plus stone tool use is typically seen in capuchins, hominids and sea otters.The australopithecines might have entered the African inland along rivers and lakes. Their dentition suggests they ate mostly fruits, hard grass-like plants, and aquatic herbaceous vegetation (AHV). The fossil data indicates that the early australopithecines of 4-3 million years ago lived in waterside forests or woodlands; and their larger, robust relatives of 2-1 million years ago in generally more open milieus near marshes and reedbeds, where they could have waded bipedally. Some anthropologists believe the present-day African apes evolved from australopithecine-like ancestors, which would imply that knuckle-walking gorillas and chimpanzees evolved in parallel from wading-climbing ‘aquarborealists’. After the human-chimp split some 6-4 million years ago, our ancestors could have stayed at, or returned to the Indian Ocean shores, where they elaborated their shellfish-eating, tool-using, beach-combing and wading-diving skills. From here the different Homo species could have colonized Africa and Eurasia by following the rivers as bipedal omnivores. Homo erectus crossed Wallace’s Line and reached Flores before 0.8 million years ago, and the earliest erectus fossils are found in beaches and swamps from Java to Georgia and Kenya 1.8-1.6 million years ago. Voluntary breath-holding, an essential requirement for diving, probably facilitated the evolution of human speech.Symposium: Water and Human Evolution, April 30th 1999, University Gent, Flanders, BelgiumProceedingsKey wordsHominid evolution, bipedalism, speech origins, dryopithecines, Australopithecus, Homo erectus, aquatic herbaceous vegetation, enamel microwear, stone tools. IntroductionThere is a strong belief within certain sections of the anthropological community that australopithecines were ancestral to humans, and that the ancestors of chimpanzees and gorillas are not represented in the African fossil record. Evidence suggesting that australopithecenes were bipedal, such as fossilized footprints and skeletal remains, is often used to support this hypothesis.Of course, this hypothesis is based partly on the assumption that chimpanzees and humans descended from ancestors that were not yet bipedal, and that bipedalism only emerged after the ancestral lines leading to chimpanzees and humans had separated. A popular theory once held that bipedalism emerged when human ancestors moved out of the forests into a more open and arid environment. We believe, however, that an alternative hypothesis may be more accurate, namely that the australopithecines were no closer to the ancestral line leading to humans than they were to the ancestral lines leading to the African apes. Further, we believe the common ancestor of humans, chimpanzees and gorillas was already at least partly bipedal, regularly wading in flooded forestssuch as coastal mangrove forests. Gorillas and chimpanzees, according to this hypothesis, evolved knuckle-walking features independently, in parallel, after moving from the coast to the African interior via rivers and gallery forests. Humans, on the other hand, descended from a hominid population that remained nearer the coast and which gave rise to efficient waders and divers, and eventually to the various species of the Homo genus, some of which later returned to a more terrestrial lifestyle. This hypothesis, in our opinion, helps explain many unique human adaptations including the development of human tool manufacturing skills and the origins of speech. Hominid fossils and scenariosSymposium: Water and Human Evolution, April 30th 1999, University Gent, Flanders, BelgiumProceedingsThe evolutionary history of all animals, including our ancestors, has been influenced by a number of environmental factors. Thus, we believe many evolutionary insights can be gained by comparing the parallel and convergent adaptations of different animals in similar environments. In fact, we believe evidence gained from comparative anatomy and physiology of living species is as important to evolutionary studies as fossil evidence.The fossil record displays well-known shortcomings. It is biased and incomplete. For instance, it could be possible that hominids living in certain environments were less likely to leave fossilized remains than hominids livingin other milieus. More specifically, geologists note that fossilization is extremely difficult in mangrove areas because tidal water movements spread the bones over a vast area, and the high acidity of the water dissolves the bonyremains. Moreover, in mangrove areas the sea floor is flat, so there is almost no chance that a landslide would ever cover remains.Because of the scantiness of the fossil record, paleontologists now generally accept the late Colin Patterson’s view that the direct ancestors of living species are unlikely to be found within it (Nelson 1998). As a result, it is probable that most, if not all, fossil hominid species found to date are simply extinct side-branches of the lines leading to the present living hominids. In part, it was this likelihood that led us to be extremely cautious about using the fossil record as the sole basis for attempting to develop a viable hominid ‘family tree’. Instead, we adopted the practice of assembling and considering all the credible available evidence in a comparative and systematic methodology. While the totality of the evidence remains incomplete, the multiple cross-checking process does


View Full Document

SC ANTH 101 - class_text_013

Documents in this Course
Load more
Download class_text_013
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view class_text_013 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view class_text_013 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?