DOC PREVIEW
TAMU MATH 304 - Lect2-04web

This preview shows page 1-2-3 out of 10 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 14:Linear independence.Spanning setLet S be a subset of a vector space V .Definition. The span of the set S is the smallestsubspace W ⊂ V that contains S. If S is notempty then W = Span(S) consists of all linearcombinationsr1v1+ r2v2+ · · · + rkvksuch thatv1, . . . , vk∈ S and r1, . . . , rk∈ R.We say that the set S spans the subspace W orthat S is a spanning set for W .Remark. If S1is a spanning set for a vector spaceV and S1⊂ S2⊂ V , then S2is also a spanning setfor V .Linear independenceDefinition. Let V be a vector space. Vectorsv1, v2, . . . , vk∈ V are called linearly dependentif they satisfy a relationr1v1+ r2v2+ · · · + rkvk= 0,where the coefficients r1, . . . , rk∈ R are not allequal to zero. Otherwise vectors v1, v2, . . . , vkarecalled linearly independent. That is, ifr1v1+r2v2+ · · · +rkvk= 0 =⇒ r1= · · · = rk= 0.An infinite set S ⊂ V is linearly dependent ifthere are some linearly dependent vectors v1, . . . , vk∈ S.Otherwise S is linearly independent.Examples of linear independence• Vectors e1= (1, 0, 0), e2= (0, 1, 0), ande3= (0, 0, 1) in R3.xe1+ ye2+ ze3= 0 =⇒ (x, y, z) = 0=⇒ x = y = z = 0• Matrices E11=1 00 0, E12=0 10 0,E21=0 01 0, and E22=0 00 1.aE11+ bE12+ cE21+ dE22= O =⇒a bc d= O=⇒ a = b = c = d = 0Examples of linear independence• Polynomials 1, x, x2, . . . , xn.a0+ a1x + a2x2+ · · · + anxn= 0 identically=⇒ ai= 0 for 0 ≤ i ≤ n• The infinite set {1, x, x2, . . . , xn, . . . }.• Polynomials p1(x) = 1, p2(x) = x − 1, andp3(x) = (x − 1)2.a1p1(x) + a2p2(x) + a3p3(x) = a1+ a2(x − 1) + a3(x − 1)2== (a1− a2+ a3) + (a2− 2a3)x + a3x2.Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically=⇒ a1− a2+ a3= a2− 2a3= a3= 0=⇒ a1= a2= a3= 0Problem Let v1= (1, 2, 0), v2= (3, 1, 1), andv3= (4, −7, 3). Determine whether vectorsv1, v2, v3are linearly independent.We have to check if there exist r1, r2, r3∈ R not allzero such that r1v1+ r2v2+ r3v3= 0.This vector equation is equivalent to a systemr1+ 3r2+ 4r3= 02r1+ r2− 7r3= 00r1+ r2+ 3r3= 01 3 402 1 −700 1 3 0The vectors v1, v2, v3are linearly dependent if andonly if the matrix A = (v1, v2, v3) is singular.We obtain that det A = 0.Theorem The following conditions are equivalent:(i) vectors v1, . . . , vkare linearly dependent;(ii) one of vectors v1, . . . , vkis a linearcombination of the other k − 1 vectors.Proof: (i) =⇒ (ii) Suppose thatr1v1+ r2v2+ · · · + rkvk= 0,where ri6= 0 for some 1 ≤ i ≤ k. Thenvi= −r1riv1− · · · −ri−1rivi−1−ri+1rivi+1− · · · −rkrivk.(ii) =⇒ (i) Suppose thatvi= s1v1+ · · · + si−1vi−1+ si+1vi+1+ · · · + skvkfor some scalars sj. Thens1v1+ · · · + si−1vi−1− vi+ si+1vi+1+ · · · + skvk= 0.Theorem Vectors v1, v2, . . . , vm∈ Rnare linearlydependent whenever m > n (i.e. , the number ofcoordinates is less than the number of vectors).Proof: Let vj= (a1j, a2j, . . . , anj) for j = 1, 2, . . . , m.Then the vector equality t1v1+ t2v2+ · · · + tmvm= 0is equivalent to the systema11t1+ a12t2+ · · · + a1mtm= 0,a21t1+ a22t2+ · · · + a2mtm= 0,· · · · · · · · ·an1t1+ an2t2+ · · · + anmtm= 0.Note that vectors v1, v2, . . . , vmare columns of the matrix(aij). The number of leading entries in the row echelon formis at most n. If m > n then there are free variables, thereforethe zero solution is not unique.Example. Consider vectors v1= (1, −1, 1),v2= (1, 0, 0), v3= (1, 1, 1), and v4= (1, 2, 4) in R3.Two vectors are linearly dependent if and only ifthey are parallel. Hence v1and v2are linearlyindependent.Vectors v1, v2, v3are linearly independent if andonly if the matrix A = (v1, v2, v3) is invertible.det A =1 1 1−1 0 11 0 1= −−1 11 1= 2 6= 0.Therefore v1, v2, v3are linearly independent.Four vectors in R3are always linearly dependent.Thus v1, v2, v3, v4are linearly dependent.Problem. Let A =−1 1−1 0. Determine whethermatrices A, A2, and A3are linearly independent.We ha ve A =−1 1−1 0, A2=0 −11 −1, A3=1 00 1.The task is to check if there exist r1, r2, r3∈ R not all zerosuch that r1A + r2A2+ r3A3= O.This matrix equation is equivalent to a system−r1+ 0r2+ r3= 0r1− r2+ 0r3= 0−r1+ r2+ 0r3= 00r1− r2+ r3= 0−1 0 101 −1 0 0−1 1 0 00 −1 1 0→1 −1 000 1 −1 00 0 0 00 0 0 0The row echelon form of the augmented matrix shows there isa free variable. Hence the system has a nonzero solution sothat the matrices are linearly dependent (one relation isA + A2+ A3=


View Full Document

TAMU MATH 304 - Lect2-04web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect2-04web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect2-04web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect2-04web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?