DOC PREVIEW
TAMU MATH 304 - Lect2-03web

This preview shows page 1-2-3-4-5-6 out of 17 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 10:Linear independence.Basis of a vector space.Linear independenceDefinition. Let V be a vector space. Vectorsv1, v2, . . . , vk∈ V are called linearly dependent ifthey satisfy a relationr1v1+ r2v2+ · · · + rkvk= 0,where the coefficients r1, . . . , rk∈ R are not allequal to zero. Otherwise vectors v1, v2, . . . , vkarecalled linearly independent. That is, ifr1v1+r2v2+ · · · +rkvk= 0 =⇒ r1= · · · = rk= 0.An infinite set S ⊂ V is linearly dependent ifthere are some linearly dependent vectors v1, . . . , vk∈ S.Otherwise S is linearly independent.Examples of linear independence• Vectors e1= (1, 0, 0), e2= (0, 1, 0), ande3= (0, 0, 1) in R3.xe1+ ye2+ ze3= 0 =⇒ (x, y, z) = 0=⇒ x = y = z = 0• Matrices E11=1 00 0, E12=0 10 0,E21=0 01 0, and E22=0 00 1.aE11+ bE12+ cE21+ dE22= O =⇒a bc d= O=⇒ a = b = c = d = 0Examples of linear independence• Polynomials 1, x, x2, . . . , xn.a0+ a1x + a2x2+ · · · + anxn= 0 identically=⇒ ai= 0 for 0 ≤ i ≤ n• The infinite set {1, x, x2, . . . , xn, . . . }.• Polynomials p1(x) = 1, p2(x) = x − 1, andp3(x) = (x − 1)2.a1p1(x) + a2p2(x) + a3p3(x) = a1+ a2(x − 1) + a3(x − 1)2== (a1− a2+ a3) + (a2− 2a3)x + a3x2.Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically=⇒ a1− a2+ a3= a2− 2a3= a3= 0=⇒ a1= a2= a3= 0Problem Let v1= (1, 2, 0), v2= (3, 1, 1), andv3= (4, −7, 3). Determine whether vectorsv2, v2, v3are linearly independent.We have to check if there exist r1, r2, r3∈ R not allzero such that r1v1+ r2v2+ r3v3= 0.This vector equation is equivalent to a systemr1+ 3r2+ 4r3= 02r1+ r2− 7r3= 00r1+ r2+ 3r3= 01 3 402 1 −700 1 3 0The vectors v1, v2, v3are linearly dependent if andonly if the matrix A = (v1, v2, v3) is singular.We obtain that det A = 0.Theorem The following conditions are equivalent:(i) vectors v1, . . . , vkare linearly dependent;(ii) one of vectors v1, . . . , vkis a linear combinationof the other k − 1 vectors.Proof: (i) =⇒ (ii) Suppose thatr1v1+ r2v2+ · · · + rkvk= 0,where ri6= 0 for some 1 ≤ i ≤ k. Thenvi= −r1riv1− · · · −ri−1rivi−1−ri+1rivi+1− · · · −rkrivk.(ii) =⇒ (i) Suppose thatvi= s1v1+ · · · + si−1vi−1+ si+1vi+1+ · · · + skvkfor some scalars sj. Thens1v1+ · · · + si−1vi−1− vi+ si+1vi+1+ · · · + skvk= 0.Theorem Vectors v1, v2, . . . , vm∈ Rnare linearlydependent whenever m > n (i.e., the number ofcoordinates is less than the number of vectors).Proof: Let vj= (a1j, a2j, . . . , anj) for j = 1, 2, . . . , m.Then the vector equality t1v1+ t2v2+ · · · + tmvm= 0is equivalent to the systema11t1+ a12t2+ · · · + a1mtm= 0,a21t1+ a22t2+ · · · + a2mtm= 0,· · · · · · · · ·an1t1+ an2t2+ · · · + anmtm= 0.Note that vectors v1, v2, . . . , vmare columns of the matrix(aij). The number of leading entries in the row echelon formis at most n. If m > n then there are free variables, thereforethe zero solution is not unique.Example. Consider vectors v1= (1, −1, 1),v2= (1, 0, 0), v3= (1, 1, 1), and v4= (1, 2, 4) in R3.Two vectors are linearly dependent if and only ifthey are parallel. Hence v1and v2are linearlyindependent.Vectors v1, v2, v3are linearly independent if andonly if the matrix A = (v1, v2, v3) is invertible.det A =1 1 1−1 0 11 0 1= −−1 11 1= 2 6= 0.Therefore v1, v2, v3are linearly independent.Four vectors in R3are always linearly dependent.Thus v1, v2, v3, v4are linearly dependent.Problem. Show that functions ex, e2x, and e3xare linearly independent in C∞(R).Suppose that aex+ be2x+ ce3x= 0 for all x ∈ R, wherea, b, c are constants. We have to show that a = b = c = 0.Differentiate this identity twice:aex+ be2x+ ce3x= 0,aex+ 2be2x+ 3ce3x= 0,aex+ 4be2x+ 9ce3x= 0.It follows that A(x)v = 0, whereA(x) =exe2xe3xex2e2x3e3xex4e2x9e3x, v =abc.A(x) =exe2xe3xex2e2x3e3xex4e2x9e3x, v =abc.det A(x) = ex1 e2xe3x1 2e2x3e3x1 4e2x9e3x= exe2x1 1 e3x1 2 3e3x1 4 9e3x= exe2xe3x1 1 11 2 31 4 9= e6x1 1 11 2 31 4 9= e6x1 1 10 1 21 4 9= e6x1 1 10 1 20 3 8= e6x1 23 8= 2e6x6= 0.Since the matrix A(x) is invertible, we obtainA(x)v = 0 =⇒ v = 0 =⇒ a = b = c = 0WronskianLet f1, f2, . . . , fnbe smooth functions on an interval[a, b]. The Wronskian W [f1, f2, . . . , fn] is afunction on [a, b] defined byW [f1, f2, . . . , fn](x) =f1(x) f2(x) · · · fn(x)f′1(x) f′2(x) · · · f′n(x)............f(n−1)1(x) f(n−1)2(x) · · · f(n−1)n(x).Theorem If W [f1, f2, . . . , fn](x0) 6= 0 for somex0∈ [a, b] then the functions f1, f2, . . . , fnarelinearly independent in C [a, b].Theorem 1 Let λ1, λ2, . . . , λkbe distinct realnumbers. Then the functions eλ1x, eλ2x, . . . , eλkxare linearly independent.Theorem 2 The set of functions{xmeλx| λ ∈ R, m = 0, 1, 2, . . . }is linearly independent.Spanning setLet S be a subset of a vector space V .Definition. The span of the set S is the smallestsubspace W ⊂ V that contains S. If S is notempty then W = Span(S) consists of all linearcombinationsr1v1+ r2v2+ · · · + rkvksuch thatv1, . . . , vk∈ S and r1, . . . , rk∈ R.We say that the set S spans the subspace W orthat S is a spanning set for W .Remark. If S1is a spanning set for a vector spaceV and S1⊂ S2⊂ V , then S2is also a spanning setfor V .BasisDefinition. Let V be a vector space. A linearlyindependent spanning set for V is called a basis.Suppose that a set S ⊂ V is a basis for V .“Spanning set” means that any vector v ∈ V can berepresented as a linear combinationv = r1v1+ r2v2+ · · · + rkvk,where v1, . . . , vkare distinct vectors from S andr1, . . . , rk∈ R. “Linearly independent” implies that the aboverepresentation is unique:v = r1v1+ r2v2+ · · · + rkvk= r′1v1+ r′2v2+ · · · + r′kvk=⇒ (r1− r′1)v1+ (r2− r′2)v2+ · · · + (rk− r′k)vk= 0=⇒ r1− r′1= r2− r′2= . . . = rk− r′k= 0Examples. • Standard basis for Rn:e1= (1, 0, 0, . . . , 0, 0), e2= (0, 1, 0, . . . , 0, 0),. . . ,en= (0, 0, 0, . . . , 0, 1).Indeed, (x1, x2, . . . , xn) = x1e1+ x2e2+ · · · +


View Full Document

TAMU MATH 304 - Lect2-03web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect2-03web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect2-03web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect2-03web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?