DOC PREVIEW
TAMU MATH 304 - Lecture 35

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 35:Matrix exponentials.• Initial value problem for a linear ODE:dydt= 2y , y(0) = 3.Solution: y(t) = 3e2t.• Initial value problem for a system of linear ODEs:(dxdt= 2x + 3y ,dydt= x + 4y,x(0) = 2, y (0) = 1.The system can be rewritten in vector formddtxy= Axy, where A =2 31 4.Solution:x(t)y(t)= etA21.What is etA?Exponential functionExponential function: f ( x) = exp x = ex, x ∈ R.Principal property: ex+y= ex· ey.Definition 1. ex= limn→∞1 +xnn.In particular, e = limn→∞1 +1nn≈ 2.7182818.Definition 2. ex= 1 + x +x22!+ · · · +xnn!+ · · ·Definition 3. f (x) = exis the unique solution ofthe initial value problem f′= f , f (0) = 1.Matrix exponentialsDefinition. For any square matrix A letexp A = eA= I + A +12!A2+ · · · +1n!An+ · · ·Matrix exponential is a limit of matrix polynomials .Remark. Let A(1), A(2), . . . be a sequence of n×nmatrices, A(n)= (a(n)ij). The sequence converges toan n×n matrix B = (bij) if a(n)ij→ bijas n → ∞,i.e., if each entry conv erges.Theorem The matrix exp A is well defined, i.e.,the series converges.Properties of matrix exponentialsTheorem 1 If AB = BA then eAeB= eBeA= eA+B.Corollary (a) etAesA= esAetA= e(t+s)A, t, s ∈ R;(b) eO= I ; (c) (eA)−1= e−A.Theorem 2ddtetA= AetA= etAA.Indeed, etA= I + tA +t22!A2+ · · · +tnn!An+ · · · ,and the series can be di fferentiated term by term.ddttnn!An=ddttnn!An=tn−1(n − 1)!An.Lemma Let A be an n×n matrix and x ∈ Rn.Then the vector function v(t) = etAx satisfiesv′= Av.Proof:dvdt=ddtetAx =AetAx = AetAx= Av.Theorem For any t0∈ R and x0∈ Rnthe initialvalue problemdvdt= Av, v(t0) = x0has a unique soluti on v(t) = e(t−t0)Ax0.Indeed, v(t) = e(t−t0)Ax0= etAe−t0Ax0= etAx,where x = e−t0Ax0is a cons tant vector.Evaluation of matrix exponentialsExample. A = diag(a1, a2, . . . , ak).An= diag(an1, an2, . . . , ank), n = 1, 2, 3, . . .eA= I + A +12!A2+ · · · +1n!An+ · · ·= diag(b1, b2, . . . , bk),where bi= 1 + ai+12!a2i+13!a3i+ · · · = eai.Theorem 1 If A = diag(a1, a2, . . . , ak) thenetA= diag(ea1t, ea2t, . . . , eakt).Theorem 2 If A = UBU−1, then etA= UetBU−1.Example. A =2 31 4.The eigenvalues of A: λ1= 1, λ2= 5.Eigenvectors: v1= (3 , −1 ), v2= (1 , 1 ).Therefore A = UBU−1, whereB =1 00 5, U =3 1−1 1.ThenetA= UetBU−1=3 1−1 1et00 e5t3 1−1 1−1=3ete5t−ete5t141 −11 3=143et+ e5t−3et+ 3e5t−et+ e5tet+ 3e5t.Problem. Solve a system of differential equations(dxdt= 2x + 3y,dydt= x + 4ysubject to initial conditions x(0) = 2, y (0) = 1.The unique solution:x(t)y(t)= etAx0, where A =2 31 4, x0=21.etA=143et+ e5t−3et+ 3e5t−et+ e5tet+ 3e5t=⇒(x(t) =34et+54e5t,y(t) = −14et+54e5t.Example. A =0 1 00 0 10 0 0, a Jordan block.A2=0 0 10 0 00 0 0, A3= O, An= O for n ≥ 3.eA= I + A +12A2=1 1120 1 10 0 1,etA= I + tA +t22A2=1 t12t20 1 t0 0 1.Example. A =1 10 1, another Jordan block.A2=1 20 1, A3=1 30 1, An=1 n0 1.etA= I +tA+t22!A2+ · · · +tnn!An+ · · · =a(t) b(t)0 a(t),where a(t) = 1 + t +t22!+t33!+ · · · = et,b(t) = t + 2t22!+ 3t33!+ · · · = tet.Thus etA=ettet0 et.Example. A =λ 10 λ, a general Jordan block.We have that A = λI + B, where B =0 10 0.Since (λI )B = B(λI ) , it foll ows that eA= eλIeB.Similarly, etA= etλIetB.etλI=eλt00 eλt= eλtI ,B2= O =⇒ etB= I + tB =1 t0 1.Thus etA= etλIetB=eλtteλt0 eλt.Problem. Solve a system of differential equations(dxdt= 2x + y,dydt= 2ysubject to initial conditions x(0) = y (0) = 1.The unique solution:x(t)y(t)= etAx0, where A =2 10 2, x0=11.etA=e2tte2t0 e2t= e2t1 t0 1=⇒(x(t) = e2t(1 + t),y(t) =


View Full Document

TAMU MATH 304 - Lecture 35

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lecture 35
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 35 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 35 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?