DOC PREVIEW
TAMU MATH 304 - Lecture 21

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 304–504Linear AlgebraLecture 21:Matrix of a linear transformation.Linear mapping = linear transformation = linear functionDefinition. Given vector spaces V1and V2, amapping L : V1→ V2is linear ifL(x + y) = L(x) + L(y),L(rx) = rL(x)for any x, y ∈ V1and r ∈ R.Basic pr operties of linear mappings:• L(r1v1+ · · · + rkvk) = r1L(v1) + · · · + rkL(vk)for all k ≥ 1, v1, . . . , vk∈ V1, and r1, . . . , rk∈ R.• L(01) = 02, where 01and 02are zero vectors inV1and V2, respectively.• L(−v) = −L(v) for any v ∈ V1.Matrix transformationsAny m×n matrix A gives rise to a transformationL : Rn→ Rmgiven by L(x) = Ax, where x ∈ Rnand L(x) ∈ Rmare regarded as colum n vectors.This transformation is linear.Example. Lxyz=1 0 23 4 70 5 8xyz.Let e1= (1, 0, 0), e2= (0, 1, 0), e3= (0, 0, 1) bethe standard basis for R3. Then vectorsL(e1), L(e2), L(e3) are columns of the matrix.Theorem 1 Suppose that {v1, v2, . . . , vn} is abasis for a vector space V . Then(i) any linear mapping L : V → W is uniquelydetermined by vectors L(v1), L(v2), . . . , L( vn);(ii) for any vectors w1, w2, . . . , wn∈ W there existsa linear mapping L : V → W such that L(vi) = wi,1 ≤ i ≤ n.Theorem 2 Suppose L : Rn→ Rmis a linear map.Then there exists an m×n matrix A such thatL(x) = Ax for all x ∈ Rn. The columns of A arevectors L(e1), L(e2), . . . , L( en), where e1, e2, . . . , enis the standard basis for Rn.Basis and coordinatesIf {v1, v2, . . . , vn} is a basis for a vector space V ,then any vector v ∈ V has a unique repr es entationv = x1v1+ x2v2+ · · · + xnvn,where xi∈ R. The coefficients x1, x2, . . . , xnarecalled the coordinates o f v with respect to theordered basis v1, v2, . . . , vn.The mappingvector v 7→ its coordinates (x1, x2, . . . , xn)provides a one-to-one correspo ndence between Vand Rn. Besides, this mapping is linear.Matrix of a linear mappingLet V , W be vector spaces and f : V → W be a linear map.Let v1, v2, . . . , vnbe a basis for V and g1: V → Rnbe thecoordinate mapping corresponding to this basis.Let w1, w2, . . . , wmbe a basis for W and g2: W → Rmbethe coordinate mapping corresponding to this basis.Vf−→ Wg1yyg2Rn−→ RmThe composition g2◦f ◦g−11is a linear mapping of Rnto Rm.It is represented as v 7→ Av, where A is an m×n matrix.A is called the matrix of f with respect to bases v1, . . . , vnand w1, . . . , wm. Columns of A are coordinates of vectorsf (v1), . . . , f (vn) with respect to the basis w1, . . . , wm.Examples. • D : P3→ P2, (Dp)(x) = p′(x).Let ADbe the matrix of D with respect to the bases1, x, x2and 1, x. Columns of ADare coordinatesof pol ynomials D1, Dx, Dx2w.r.t. the basis 1, x.D1 = 0, Dx = 1, Dx2= 2x =⇒ AD=0 1 00 0 2• L : P3→ P3, (Lp) (x) = p(x + 1).Let ALbe the matrix of L w.r. t. the basis 1, x, x2.L1 = 1, Lx = 1 + x, Lx2= (x + 1)2= 1 + 2x + x2.=⇒ AL=1 1 10 1 20 0 1Problem. Consider a linear operator L : R2→ R2,Lxy=1 10 1xy.Find the matrix of L with respect to the basisv1= (3, 1), v2= (2, 1) .Let N be the desired matrix. Columns of N are coordinates ofthe vectors L(v1) and L( v2) w.r.t. the basis v1, v2.L(v1) =1 10 131=41, L(v2) =1 10 121=31.Clearly, L(v2) = v1= 1v1+ 0v2.L(v1) = αv1+ βv2⇐⇒3α + 2β = 4α + β = 1⇐⇒α = 2β = −1Thus N =2 1−1 0.Problem. Find the matrix of the identity mappingL : R2→ R2, L(x) = x with respect to the bases:(i) e1= (1, 0), e2= (0, 1) and e1, e2;(ii) v1= (3, 1), v2= (2, 1) and v1, v2;(iii) v1, v2and e1, e2;(iv) e1, e2and v1, v2.The desired matrix is the transition matrix fromthe first basis to the second one:A1= A2=1 00 1, A3=3 21 1,A4= A−13=1 −2−1 3.Change of basisConsider a linear operator L : Rn→ Rn. I t i s givenby L(x) = Ax, x ∈ Rn, where A is an n×n matrix.Let u1, u2, . . . , unbe a nonstandard basis for Rn.If we change the standard coordinates in Rnto thecoordinates relati ve to u1, u2, . . . , un, then theoperator L is given by L(y) = By, y ∈ Rn, where Bis another n×n matrix.A is the matrix of L relative to the standar d basis.B is the matrix of L relative to the basis u1, . . . , un.Columns of A ar e vectors L(e1), . . . , L(en).Columns of B are coordinates of vectorsL(u1), . . . , L(un) relative to the basis u1, . . . , un.Problem 1. Given the matrix A, find the matrix B.Problem 2. Given the matrix B, find the matrix A.Let uj= (u1j, u2j, . . . , unj), j = 1, 2, . . . , n.Consider the transition matrix U = (uij) from thebasis u1, . . . , unto the standard basi s .Theorem A = UBU−1, B = U−1AU.Proof: It is enough to prove the 2nd formula asB=U−1AU =⇒ UBU−1=U(U−1AU)U−1=(UU−1)A(UU−1)=A.Take any x ∈ Rnand let y be the (vector of) nonstandardcoordinates of x.Then Uy are standard coordinates of x=⇒ AUy are standard coordinates of L(x)=⇒ U−1AUy are nonstandard coordinates of L(x).Problem. Consider a linear operator L : R2→ R2,Lxy=1 10 1xy.Find the matrix of L with respect to the basisv1= (3, 1), v2= (2, 1) .Let S be the matrix of L with respect to the standard basis,N be the matrix of L with respect to the basis v1, v2, and U bethe transition matrix from v1, v2to e1, e2. Then N = U−1SU.S =1 10 1, U =3 21 1,N = U−1SU =1 −2−1 31 10 13 21 1=1 −1−1 23 21 1=2 1−1


View Full Document

TAMU MATH 304 - Lecture 21

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lecture 21
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 21 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 21 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?