DOC PREVIEW
TAMU MATH 304 - Lect2-05web

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 15:Wronskian.The Vandermonde determinant.Basis of a vector space.Linear independenceDefinition. Let V be a vector space. Vectorsv1, v2, . . . , vk∈ V are called linearly dependent if theysatisfy a relationr1v1+ r2v2+ · · · + rkvk= 0,where the coefficients r1, . . . , rk∈ R are not all equal to zero.Otherwise the vectors v1, v2, . . . , vkare called linearlyindependent. That is, ifr1v1+r2v2+ · · · +rkvk= 0 =⇒ r1= · · · = rk= 0.An infinite set S ⊂ V is linearly dependent if there aresome linearly dependent vectors v1, . . . , vk∈ S. Otherwise Sis linearly independent.Remark. If a set S (finite or infinite) is linearly independentthen any subset of S is also linearly independent.Theorem Vectors v1, . . . , vk∈ V are linearlydependent if and only if one of them is a linearcombination of the other k − 1 vectors.Examples of linear independence.• Vectors e1= (1, 0, 0), e2= (0, 1, 0), ande3= (0, 0, 1) in R3.• Matrices E11=1 00 0, E12=0 10 0,E21=0 01 0, and E22=0 00 1.• Polynomials 1, x, x2, . . . , xn, . . .Problem. Show that functions ex, e2x, and e3xare linearly independent in C∞(R).Suppose that aex+ be2x+ ce3x= 0 for all x ∈ R, wherea, b, c are constants. We have to show that a = b = c = 0.Differentiate this identity twice:aex+ be2x+ ce3x= 0,aex+ 2be2x+ 3ce3x= 0,aex+ 4be2x+ 9ce3x= 0.It follows that A(x)v = 0, whereA(x) =exe2xe3xex2e2x3e3xex4e2x9e3x, v =abc.A(x) =exe2xe3xex2e2x3e3xex4e2x9e3x, v =abc.det A(x) = ex1 e2xe3x1 2e2x3e3x1 4e2x9e3x= exe2x1 1 e3x1 2 3e3x1 4 9e3x= exe2xe3x1 1 11 2 31 4 9= e6x1 1 11 2 31 4 9= e6x1 1 10 1 21 4 9= e6x1 1 10 1 20 3 8= e6x1 23 8= 2e6x6= 0.Since the matrix A(x) is invertible, we obtainA(x)v = 0 =⇒ v = 0 =⇒ a = b = c = 0WronskianLet f1, f2, . . . , fnbe smooth functions on an interval[a, b]. The Wronskian W [f1, f2, . . . , fn] is afunction on [a, b] defined byW [f1, f2, . . . , fn](x) =f1(x) f2(x) · · · fn(x)f′1(x) f′2(x) · · · f′n(x)............f(n−1)1(x) f(n−1)2(x) · · · f(n−1)n(x).Theorem If W [f1, f2, . . . , fn](x0) 6= 0 for somex0∈ [a, b] then the fu nctions f1, f2, . . . , fnarelinearly independent in C [a, b].Theorem Let λ1, λ2, . . . , λkbe distinct realnumbers. Then the functions eλ1x, eλ2x, . . . , eλkxare linearly independent.W [eλ1x, eλ2x, . . . , eλkx](x) =eλ1xeλ2x· · · eλkxλ1eλ1xλ2eλ2x· · · λkeλkx............λk−11eλ1xλk−12eλ2x· · · λk−1keλkx= e(λ1+λ2+···+λk)x1 1 · · · 1λ1λ2· · · λk............λk−11λk−12· · · λk−1k.The Vandermonde determinantDefinition. The Vandermonde determinant isthe determinant of the following matrixV =1 x1x21· · · xn−111 x2x22· · · xn−121 x3x23· · · xn−13...............1 xnx2n· · · xn−1n,where x1, x2, . . . , xn∈ R. Equivalently,V = (aij)1≤i,j≤n, where aij= xj−1i.Examples.•1 x11 x2= x2− x1.•1 x1x211 x2x221 x3x23=1 x101 x2x22− x1x21 x3x23− x1x3=1 0 01 x2− x1x22− x1x21 x3− x1x23− x1x3=x2− x1x22− x1x2x3− x1x23− x1x3= (x2− x1)1 x2x3− x1x23− x1x3= (x2− x1)(x3− x1)1 x21 x3= (x2− x1)(x3− x1)(x3− x2).Theorem1 x1x21· · · xn−111 x2x22· · · xn−121 x3x23· · · xn−13...............1 xnx2n· · · xn−1n=Y1≤i<j≤n(xj− xi).Corollary The Vandermonde determinant is notequal to 0 if and only if the numbers x1, x2, . . . , xnare distinct.Let x1, x2, . . . , xnbe distinct real numbers.Theorem For any b1, b2, . . . , bn∈ R there exists aunique polynomial p(x) = a0+a1x+ · · · +an−1xn−1of degree less than n such that p(xi) = bi,1 ≤ i ≤ n.a0+ a1x1+ a2x21+ · · · + an−1xn−11= b1a0+ a1x2+ a2x22+ · · · + an−1xn−12= b2· · · · · · · · · · · ·a0+ a1xn+ a2x2n+ · · · + an−1xn−1n= bna0, a1, . . . , an−1are unknowns. The coefficientmatrix is the Vandermonde matrix.BasisDefinition. Let V be a vector space. A linearlyindependent spanning set for V is called a basis.Suppose that a set S ⊂ V is a basis for V .“Spanning set” means that any vector v ∈ V ca n berepresented as a linear combinationv = r1v1+ r2v2+ · · · + rkvk,where v1, . . . , vkare distinct vectors from S andr1, . . . , rk∈ R. “Linearly independent” implies that the aboverepresentation is unique:v = r1v1+ r2v2+ · · · + rkvk= r′1v1+ r′2v2+ · · · + r′kvk=⇒ (r1− r′1)v1+ (r2− r′2)v2+ · · · + (rk− r′k)vk= 0=⇒ r1− r′1= r2− r′2= . . . = rk− r′k= 0Examples. • Standard basis for Rn:e1= (1, 0, 0, . . . , 0, 0), e2= (0, 1, 0, . . . , 0, 0),. . . ,en= (0, 0, 0, . . . , 0, 1).Indeed, (x1, x2, . . . , xn) = x1e1+ x2e2+ · · · + xnen.• Matrices1 00 0,0 10 0,0 01 0,0 00 1form a basis for M2,2(R).a bc d= a1 00 0+ b0 10 0+ c0 01 0+ d0 00 1.• Polynomials 1, x, x2, . . . , xn−1form a basis forPn= {a0+ a1x + · · · + an−1xn−1: ai∈ R}.• The infinite set {1, x, x2, . . . , xn, . . . } is a basisfor P, the space of all


View Full Document

TAMU MATH 304 - Lect2-05web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect2-05web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect2-05web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect2-05web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?