DOC PREVIEW
TAMU MATH 304 - Lect4-01web

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 23:Matrix exponentials.Initial value problem for a system of linear PDEs:(dxdt= 4x + 3y,dydt= y,x(0) = 1, y(0) = 1.The system can be rewritten in vector form:dvdt= Av, where A =4 30 1, v =xy.Matrix A is diagonalizable: A = UBU−1, whereB =4 00 1, U =1 −10 1.Let w =w1w2be coordinates of the vector v relative to thebasis v1= (1, 0), v2= (−1, 1) of eigenvectors of A. Thenv = Uw =⇒ w = U−1v.It follows thatdwdt=ddt(U−1v) = U−1dvdt= U−1Av = U−1AUw.Hencedwdt= Bw ⇐⇒(dw1dt= 4w1,dw2dt= w2.General solution: w1(t) = c1e4t, w2(t) = c2et, where c1, c2∈ R.Initial condition:w(0) = U−1v(0) =1 −10 1−111=1 10 111=21.Thus w1(t) = 2e4t, w2(t) = et. Thenx(t)y(t)= Uw(t) =1 −10 12e4tet=2e4t−etet.• Initial value problem for a linear ODE:dydt= 2y, y(0) = 3.Solution: y(t) = 3e2t.• Initial value problem for a system of linear ODEs:(dxdt= 2x + 3y,dydt= x + 4y,x(0) = 2, y (0) = 1.The system can be rewritten in vector formddtxy= Axy, where A =2 31 4.Solution:x(t)y(t)= etA21.What is etA?Exponential functionExponential function: f (x) = exp x = ex, x ∈ R.Principal property: ex+y= ex· ey.Definition 1. ex= limn→∞1 +xnn.In particular, e = limn→∞1 +1nn≈ 2.7182818.Definition 2. ex= 1 + x +x22!+ · · · +xnn!+ · · ·Definition 3. f (x) = exis the unique solution ofthe initial value problem f′= f , f (0) = 1.Complex exponentialsDefinition. For any z ∈ C letez= 1 + z +z22!+ · · · +znn!+ · · ·Remark. A sequence of complex numbersz1= x1+ iy1, z2= x2+ iy2, . . . convergesto z = x + iy if xn→ x and yn→ y as n → ∞.Theorem 1 If z = x + iy , x, y ∈ R, th enez= ex(cos y + i sin y ).In particular, eiφ= cos φ + i sin φ, φ ∈ R.Theorem 2 ez+w= ez· ewfor all z, w ∈ C.Proposition eiφ= cos φ + i sin φ for all φ ∈ R.Proof: eiφ= 1 + iφ +(iφ)22!+ · · · +(iφ)nn!+ · · ·The sequence 1, i, i2, i3, . . . , in, . . . is periodic:1, i, −1, −i|{z }, 1, i, −1, −i| {z }, . . .It follows thateiφ= 1 −φ22!+φ44!− · · · + (−1)kφ2k(2k)!+ · · ·+ iφ −φ33!+φ55!− · · · + (−1)kφ2k+1(2k + 1)!+ · · ·= cos φ + i sin φ.Matrix exponentialsDefinition. For any square matrix A letexp A = eA= I + A +12!A2+ · · · +1n!An+ · · ·Matrix exponential is a limit of matrix polynomials.Remark. Let A(1), A(2), . . . be a sequence of n×nmatrices, A(n)= (a(n)ij). The sequence converges toan n×n matrix B = (bij) if a(n)ij→ bijas n → ∞,i.e., if each entry converges.Theorem The matrix exp A is well defined, i.e.,the series converges.Properties of matrix exponentialsTheorem 1 If AB = BA then eAeB= eBeA= eA+B.Corollary (a) etAesA= esAetA= e(t+s)A, t, s ∈ R;(b) eO= I ; (c) (eA)−1= e−A.Theorem 2ddtetA= AetA= etAA.Indeed, etA= I + tA +t22!A2+ · · · +tnn!An+ · · · ,and the series can be differentiated term by term.ddttnn!An=ddttnn!An=tn−1(n − 1)!An.Lemma Let A be an n×n matrix and x ∈ Rn.Then the vector function v(t) = etAx satisfiesv′= Av.Proof:dvdt=ddtetAx =AetAx = AetAx= Av.Theorem For any t0∈ R and x0∈ Rnthe initialvalue problemdvdt= Av, v(t0) = x0has a unique solution v(t) = e(t−t0)Ax0.Indeed, v(t) = e(t−t0)Ax0= etAe−t0Ax0= etAx,where x = e−t0Ax0is a constant vector.Evaluation of matrix exponentialsExample. A = diag(a1, a2, . . . , ak).An= diag(an1, an2, . . . , ank), n = 1, 2, 3, . . .eA= I + A +12!A2+ · · · +1n!An+ · · ·= diag(b1, b2, . . . , bk),where bi= 1 + ai+12!a2i+13!a3i+ · · · = eai.Theorem If A = diag(a1, a2, . . . , ak) theneA= diag(ea1, ea2, . . . , eak),etA= diag(ea1t, ea2t, . . . , eakt).Let A be an n-by-n matrix and suppose there existsa basis v1, . . . , vnfor Rnconsisting of eigenvectorsof A. That is, Avk= λkvk, where λk∈ R.Then A = UBU−1, where B = diag(λ1, λ2, . . . , λn)and U is a transition matrix whose columns arevectors v1, v2, . . . , vn.A2= UBU−1UBU−1= UB2U−1,A3= A2A = UB2U−1UBU−1= UB3U−1.Likewise, An= UBnU−1for any n ≥ 1.I + 2A − 3A2= UIU−1+ 2UBU−1− 3UB2U−1== U(I + 2B − 3B2)U−1.=⇒ p(A) = Up(B)U−1for any polynomial p(x).=⇒ etA= UetBU−1for all t ∈ R.Example. A =2 31 4.The eigenvalues of A: λ1= 1, λ2= 5.Eigenvectors: v1= (3, −1), v2= (1, 1).Therefore A = UBU−1, whereB =1 00 5, U =3 1−1 1.ThenetA= UetBU−1=3 1−1 1et00 e5t3 1−1 1−1=3ete5t−ete5t141 −11 3=143et+ e5t−3et+ 3e5t−et+ e5tet+ 3e5t.Problem. Solve a system of differential equations(dxdt= 2x + 3y,dydt= x + 4ysubject to initial conditions x(0) = 2, y (0) = 1.The unique solution:x(t)y(t)= etAx0, where A =2 31 4, x0=21.etA=143et+ e5t−3et+ 3e5t−et+ e5tet+ 3e5t=⇒(x(t) =34et+54e5t,y(t) = −14et+54e5t.Example. A =0 1 00 0 10 0 0, a Jordan block.A2=0 0 10 0 00 0 0, A3= O, An= O for n ≥ 3.eA= I + A +12A2=1 1120 1 10 0 1,etA= I + tA +t22A2=1 t12t20 1 t0 0 1.Example. A =1 10 1, another Jordan block.A2=1 20 1, A3=1 30 1, An=1 n0 1.etA= I +tA+t22!A2+ · · · +tnn!An+ · · · =a(t) b(t)0 a(t),where a(t) = 1 + t +t22!+t33!+ · · · = et,b(t) = t + 2t22!+ 3t33!+ · · · = tet.Thus etA=ettet0 et.Example. A =λ 10 λ, a general Jordan block.We have that A = λI + B, where B =0 10 0.Since (λI )B = B(λI ), it follows that eA= eλIeB.Similarly, etA= etλIetB.etλI=eλt00 eλt= eλtI ,B2= O =⇒ etB= I + tB =1 t0 1.Thus etA= etλIetB=eλtteλt0 eλt.Problem. Solve a system of differential equations(dxdt= 2x + y ,dydt= 2ysubject to initial conditions x(0) = y (0) = 1.The unique solution:x(t)y(t)= etAx0, where A =2 10 2, x0=11.etA=e2tte2t0 e2t= e2t1 t0 1=⇒(x(t) = e2t(1 + t),y(t) =


View Full Document

TAMU MATH 304 - Lect4-01web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect4-01web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect4-01web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect4-01web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?