DOC PREVIEW
TAMU MATH 304 - Lect1-04web

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 4:Matrix multiplication.Diagonal matrices.Inverse matrix.MatricesDefinition. An m-by-n matrix is a rectangulararray of numbers that has m rows and n columns:a11a12. . . a1na21a22. . . a2n............am1am2. . . amnNotation: A = (aij)1≤i≤n, 1≤j≤mor simply A = (aij)if the dimensions are known.Matrix algebra: linear operationsAddition: two matrices of the same dimensionscan be added by adding their corresponding entries.Scalar multiplication: to multiply a matrix A bya scalar r, one multiplies each entry of A by r.Zero matrix O: all entries are zeros.Negative: −A is defined as (−1)A.Subtraction: A − B is defined as A + (−B).As far as the linear operations are concerned, them×n matrices can be regarded as mn-dimensionalvectors.Properties of linear operations(A + B) + C = A + (B + C )A + B = B + AA + O = O + A = AA + (−A) = (−A) + A = Or(sA) = (rs)Ar(A + B) = rA + rB(r + s)A = rA + sA1A = A0A = ODot productDefinition. The dot product of n-dimensionalvectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)is a scalarx · y = x1y1+ x2y2+ · · · + xnyn=nXk=1xkyk.The dot product is also called the scalar product.Matrix multiplicationThe product of matrices A and B is defined if thenumber of columns in A matches the number ofrows in B.Definition. Let A = (aik) be an m×n matrix andB = (bkj) be an n×p matrix. The product AB isdefined to be the m×p matrix C = (cij) such thatcij=Pnk=1aikbkjfor all indices i, j.That is, matrices are multiplied row by column:∗ ∗ ∗* * *∗ ∗* ∗∗ ∗* ∗∗ ∗ * ∗=∗ ∗ ∗ ∗∗ ∗* ∗A =a11a12. . . a1na21a22. . . a2n............am1am2. . . amn=v1v2...vmB =b11b12. . . b1pb21b22. . . b2p............bn1bn2. . . bnp= (w1, w2, . . . , wp)=⇒ AB =v1·w1v1·w2. . . v1·wpv2·w1v2·w2. . . v2·wp............vm·w1vm·w2. . . vm·wpExamples.(x1, x2, . . . , xn)y1y2...yn= (Pnk=1xkyk),y1y2...yn(x1, x2, . . . , xn) =y1x1y1x2. . . y1xny2x1y2x2. . . y2xn............ynx1ynx2. . . ynxn.Example.1 1 −10 2 10 3 1 1−2 5 6 01 7 4 1=−3 1 3 0−3 17 16 10 3 1 1−2 5 6 01 7 4 11 1 −10 2 1is not definedSystem of linear equations:a11x1+ a12x2+ · · · + a1nxn= b1a21x1+ a22x2+ · · · + a2nxn= b2· · · · · · · · ·am1x1+ am2x2+ · · · + amnxn= bmMatrix representation of the system:a11a12. . . a1na21a22. . . a2n............am1am2. . . amnx1x2...xn=b1b2...bma11x1+ a12x2+ · · · + a1nxn= b1a21x1+ a22x2+ · · · + a2nxn= b2· · · · · · · · ·am1x1+ am2x2+ · · · + amnxn= bm⇐⇒ Ax = b,whereA =a11a12. . . a1na21a22. . . a2n............am1am2. . . amn, x =x1x2...xn, b =b1b2...bm.Properties of matrix multiplication:(AB)C = A(BC ) (associative law)(A + B)C = AC + BC (distributive law #1)C (A + B) = CA + CB (distributive law #2)(rA)B = A(rB) = r (AB)Any of the above identities holds provided thatmatrix sums and products are well defined.If A and B are n×n matrices, then both AB and BAare well defined n×n matrices.However, in general, AB 6= BA.Example. Let A =2 00 1, B =1 10 1.Then AB =2 20 1, BA =2 10 1.If AB does equal BA, we say that the matrices Aand B commute.Problem. Let A and B be arbitrary n×n matrices.Is it true that (A − B)(A + B) = A2− B2?(A − B)(A + B) = (A − B)A + (A − B)B= (AA − BA) + (AB − BB)= A2+ AB − BA − B2Hence (A − B)(A + B) = A2− B2if and only ifA commutes with B.Diagonal matricesIf A = (aij) is a square matrix, then the entries aiiare called diagonal entries. A square matrix iscalled diagonal if all non-diagonal entries are zeros.Example.7 0 00 1 00 0 2, denoted diag(7, 1, 2).Let A = diag(s1, s2, . . . , sn), B = diag(t1, t2, . . . , tn).Then A + B = diag(s1+ t1, s2+ t2, . . . , sn+ tn),rA = diag(rs1, rs2, . . . , rsn).Example.7 0 00 1 00 0 2−1 0 00 5 00 0 3=−7 0 00 5 00 0 6Theorem Let A = diag(s1, s2, . . . , sn),B = diag(t1, t2, . . . , tn).Then A + B = diag(s1+ t1, s2+ t2, . . . , sn+ tn),rA = diag(rs1, rs2, . . . , rsn).AB = diag(s1t1, s2t2, . . . , sntn).In particular, diagonal matrices always commute(i.e., AB = BA).Example.7 0 00 1 00 0 2a11a12a13a21a22a23a31a32a33=7a117a127a13a21a22a232a312a322a33Theorem Let D = diag(d1, d2, . . . , dm) and A bean m×n matrix. The n the matrix DA is obtainedfrom A by multiplying the ith row by difori = 1, 2, . . . , m:A =v1v2...vm=⇒ DA =d1v1d2v2...dmvmExample.a11a12a13a21a22a23a31a32a337 0 00 1 00 0 2=7a11a122a137a21a222a237a31a322a33Theorem Let D = diag(d1, d2, . . . , dn) and A bean m×n matrix. The n the matrix AD is obtainedfrom A by multiplying the ith column by difori = 1, 2, . . . , n:A = (w1, w2, . . . , wn)=⇒ AD = (d1w1, d2w2, . . . , dnwn)Identity matrixDefinition. The identity matrix (or unit matrix) isa diagonal matrix with all diagonal entries equal to 1.The n×n identity matrix is denoted Inor simply I .I1= (1), I2=1 00 1, I3=1 0 00 1 00 0 1.In general, I =1 0 . . . 00 1 . . . 0............0 0 . . . 1.Theorem. Let A be an arbitrary m×n matrix.Then ImA = AIn= A.Inverse matrixLet Mn(R) denote the set of all n×n matrices withreal entries. We can add, subtract, and multiplyelements of Mn(R). What about division?Definition. Let A be an n×n matrix. Supposethere exists an n×n matrix B such thatAB = BA = In.Then the matrix A is called invertible and B iscalled the inverse of A (denoted A−1).A non-invertible square matrix is called singular.AA−1= A−1A = IExamplesA =1 10 1, B =1 −10 1, C =−1 00 1.AB =1 10 11 −10 1=1 00 1,BA =1 −10 11 10 1=1 00 1,C2=−1 00 1−1 00 1=1 00 1.Thus A−1= B, B−1= A, and C−1= C .Inverting diagonal matricesTheorem A diagonal matrix D = diag(d1, . . . , dn)is invertible if and only if all diagonal entries arenonzero: di6= 0 for


View Full Document

TAMU MATH 304 - Lect1-04web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect1-04web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect1-04web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect1-04web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?