DOC PREVIEW
TAMU MATH 304 - Lect2-07web

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 17:Basis and coordinates.Basis and dimensionDefinition. Let V be a vector space. A linearlyindependent spanning set for V is called a basis.Theorem Any vector space V has a bas is. If Vhas a finite basis, then all bases for V are finite andhave the s ame number of elements.Definition. The dimension of a vector space V ,denoted dim V , is the number of elements in any ofits bases.Examples. • dim Rn= n• Mm,n(R): the space of m×n m atricesdim Mm,n(R) = mn• Pn: polynomials of degree less than ndim Pn= n• P: the space o f all po lynomialsdim P = ∞• {0}: the trivial vector spacedim {0} = 0Basis and coordinatesIf {v1, v2, . . . , vn} is a basis for a vector space V ,then any vector v ∈ V has a unique representationv = x1v1+ x2v2+ · · · + xnvn,where xi∈ R. The coefficients x1, x2, . . . , xnarecalled the coordinates of v with respect to theordered basis v1, v2, . . . , vn.The mappingvector v 7→ its coordinates (x1, x2, . . . , xn)is a one-to-one correspo ndence between V and Rn.This correspondence r es pects linear operations in Vand in Rn.Examples. • Coordinates of a vectorv = (x1, x2, . . . , xn) ∈ Rnrelative to the s tandardbasis e1= (1, 0, . . . , 0, 0), e2= (0, 1, . . . , 0, 0),. . . ,en= (0, 0, . . . , 0, 1) are (x1, x2, . . . , xn).• Coordinates of a matrixa bc d∈ M2,2(R)relative to the basis1 00 0,0 10 0,0 01 0,0 00 1are (a, b, c, d).• Coordinates of a polynomialp(x) = a0+ a1x + · · · + an−1xn−1∈ Pnrelative tothe basis 1, x, x2, . . . , xn−1are (a0, a1, . . . , an−1).Vectors u1=(2, 1) and u2=(3, 1) form a basis for R2.Problem 1. Find coordinates of the vectorv = (7, 4) with respect to the basis u1, u2.The desired coordinates x, y satisfyv = xu1+yu2⇐⇒2x + 3y = 7x + y = 4⇐⇒x = 5y = −1Problem 2. Find the vector w whose coordinateswith respect to the basis u1, u2are (7, 4).w = 7u1+ 4u2= 7(2, 1) + 4( 3, 1) = (26, 11)Change of coordinatesGiven a vector v ∈ R2, let (x, y ) be its standardcoordinates, i.e., coordinates with respect to thestandard basis e1= (1, 0), e2= (0, 1), and let(x′, y′) be its coordinates with respect to the basi sv1= (3, 1), v2= (2, 1).Problem. Find a relation between (x, y ) and (x′, y′).By definition, v = xe1+ ye2= x′v1+ y′v2.In standard coordinates,xy= x′31+ y′21=3 21 1x′y′=⇒x′y′=3 21 1−1xy=1 −2−1 3xyChange of coordinates in RnLet u1, u2, . . . , unbe a basis for Rn.Take any vector x ∈ Rn. Let (x1, x2, . . . , xn) be thestandard coordinates of x and (x′1, x′2, . . . , x′n) be thecoordinates of x with respect to the basisu1, u2, . . . , un.Problem 1. Given the standard coordinates(x1, x2, . . . , xn), find the nonstandard coordinates(x′1, x′2, . . . , x′n).Problem 2. Given the nonstandard coordinates(x′1, x′2, . . . , x′n), find the standard coordinates(x1, x2, . . . , xn).It turns out thatx1x2...xn=u11u12. . . u1nu21u22. . . u2n............un1un2. . . unnx′1x′2...x′n.The matrix U = (uij) does not depend on the v ector x.Columns of U are coordinates of vectorsu1, u2, . . . , unwith respect to the standard basis.U is called the transition matrix from the basisu1, u2, . . . , unto the standard basis e1, e2, . . . , en.This solves Problem 2. To solve Problem 1, we haveto use the inverse matrix U−1, which is thetransition matrix from e1, . . . , ento u1, . . . , un.Problem. Find the transition matrix from thestandard basis e1, e2, e3in R3to the basisu1= (1, 1, 0), u2= (0, 1, 1), u3= (1, 1, 1).The transition matrix from u1, u2, u3to e1, e2, e3isU =10 111 10 1 1.The transition matrix from e1, e2, e3to u1, u2, u3isthe inverse matrix A = U−1.The inverse matrix can be computed using rowreduction.(U | I ) =1 0 1 1 0 01 1 1 0 1 00 1 10 0 1Subtract the 1st row from the 2nd row:→1 0 11 0 00 1 0−1 1 00 1 10 0 1Subtract the 2nd row from the 3rd row:→1 0 1 1 0 00 1 0 −1 1 00 0 1 1 −1 1→1 0 1 1 0 00 1 0 −1 1 00 01 1 −1 1Subtract the 3rd row from the 1st row:→1 0 00 1 −10 1 0 −1 1 00 0 11 −1 1= (I | U−1)Thus A =0 1 −1−1 1 01 −1 1.The columns of A are coordinates of vectorse1, e2, e3with respect to the basis u1, u2, u3.Change of coordinates: general caseLet V be a vector space.Let v1, v2, . . . , vnbe a basis for V and g1: V → Rnbe thecoordinate mapping corresponding to this basis.Let u1, u2, . . . , unbe another basis for V and g2: V → Rnbe the coordinate mapping corresponding to this basis.Vg1ւg2ցRn−→ RnThe composition g2◦g−11is a transformation of Rn.It has the form x 7→ Ux, where U i s an n×n matrix.U is called the transition matrix from v1, v2. . . , vntou1, u2. . . , un. Columns of U are coordinates of the vectorsv1, v2, . . . , vnwith respect to the basis u1, u2, . . . , un.Problem. Find the transition matrix from thebasis p1(x) = 1, p2(x) = x + 1 , p3(x) = (x + 1)2tothe basis q1(x) = 1, q2(x) = x, q3(x) = x2for thevector space P3.We have to find coordinates of the po lynomialsp1, p2, p3with respect to the basis q1, q2, q3:p1(x) = 1 = q1(x),p2(x) = x + 1 = q1(x) + q2(x),p3(x) = (x+1)2= x2+2x+1 = q1(x)+2q2(x)+q3(x).Thus the transition matrix is1 1 10 1 20 0 1.Problem. Find the transition matrix from thebasis v1= (1, 2, 3), v2= (1, 0, 1), v3= (1, 2, 1) tothe basis u1= (1, 1, 0), u2= (0, 1, 1), u3= (1, 1, 1).To change coordinates from v1, v2, v3to u1, u2, u3,we first chang e coordinates from v1, v2, v3toe1, e2, e3, and then from e1, e2, e3to u1, u2, u3.Transition matrix from v1, v2, v3to e1, e2, e3:U1=1 1 12 0 23 1 1.Transition matrix from e1, e2, e3to u1, u2, u3:U2=1 0 11 1 10 1 1−1=0 1 −1−1 1 01 −1 1.Transition matrix from v1, v2, v3to u1, u2, u3:U2U1=0 1 −1−1 1 01 −1 11 1 12 0 23 1 1=−1 −1 11 −1 12 2


View Full Document

TAMU MATH 304 - Lect2-07web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect2-07web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect2-07web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect2-07web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?