DOC PREVIEW
TAMU MATH 304 - Lecture7web

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 304–504Linear AlgebraLecture 7:Elementary matrices.Determinants.Inverse matrixDefinition. Let A be an n×n matrix. The inverseof A is an n×n matrix, denoted A−1, such thatAA−1= A−1A = I .If A−1exists then the matrix A is called invertible.Otherwise A is called singular.Inverting diagonal matricesTheorem A diagonal matrix D = diag(d1, . . . , dn)is invertibl e if and only if all diagonal entries arenonzero: di6= 0 for 1 ≤ i ≤ n.If D is i nvertible then D−1= diag(d−11, . . . , d−1n).d10 . . . 00 d2. . . 0............0 0 . . . dn−1=d−110 . . . 00 d−12. . . 0............0 0 . . . d−1nInverting 2×2 matricesDefinition. The determinant of a 2×2 matrixA =a bc dis det A = ad − bc.Theorem A matrix A =a bc dis invertibl e ifand only if det A 6= 0.If det A 6= 0 thena bc d−1=1ad − bcd −b−c a.Fundamental results on inverse matricesTheorem 1 Given a square matrix A, the following areequivalent:(i) A is invertible;(ii) x = 0 is the only solution of the matrix equation Ax = 0;(iii) the row echelon form of A has no zero rows;(iv) the reduced row echelon form of A is the identity matrix.Theorem 2 Suppose that a sequence of elementary rowoperations converts a matrix A into the identity matrix.Then the same sequence of operations conv erts the identitymatrix into the inverse matrix A−1.Theorem 3 For any n× n matrices A and B,BA = I ⇐⇒ AB = I .Example. A =3 −2 01 0 1−2 3 0.A convenient way to com pute the inver s e matrixA−1is to merge the matri ces A and I into one 3×6matrix (A | I ), and apply elementary row oper ationsto this new matrix.A =3 −2 01 0 1−2 3 0, I =1 0 00 1 00 0 1(A | I ) =3 −2 01 0 01 0 1 0 1 0−2 3 0 0 0 1(A | I ) =3 −2 01 0 01 0 10 1 0−2 3 0 0 0 1As soon as the left half of the 3×6 matrix isconverted to the identity matrix, we have got theinverse matrix A−1in the right half.→1 0 0350250 1 0250350 0 1−351 −25Thus3 −2 01 0 1−2 3 0−1=3502525035−351 −25.That is,3 −2 01 0 1−2 3 03502525035−351 −25=1 0 00 1 00 0 1,3502525035−351 −253 −2 01 0 1−2 3 0=1 0 00 1 00 0 1.Why does it work?1 0 00 2 00 0 1a1a2a3b1b2b3c1c2c3=a1a2a32b12b22b3c1c2c3,1 0 03 1 00 0 1a1a2a3b1b2b3c1c2c3=a1a2a3b1+3a1b2+3a2b3+3a3c1c2c3,1 0 00 0 10 1 0a1a2a3b1b2b3c1c2c3=a1a2a3c1c2c3b1b2b3.Proposition Any el ementary row operation can besimulated as left multiplication by a certai n matrix.Elementary ma tr icesE =1...O1r1O...1row #iTo obtain the matrix EA from A, multi ply the i throw by r . To obtain the matrix AE from A, m ultiplythe ith column by r.Elementary ma tr icesE =1......O0 · · · 1.........0 · · · r · · · 1............0 · · · 0 · · · 0 · · · 1row #irow #jTo obtai n the matrix EA from A, add r times the ithrow to the jth row. To o btai n the matrix AE fromA, add r times the jth column to the ith column.Elementary ma tr icesE =1 O...0 · · · 1.........1 · · · 0...O 1row #irow #jTo obtain the matrix EA from A, interchange theith row with the jth row. To obtain AE from A,interchange the ith co lumn with the jth column.Why does it work?Assume that a square matrix A can be converted tothe identity matrix by a sequence of elementary rowoperations. ThenEkEk−1. . . E2E1A = I ,where E1, E2, . . . , Ekare elementary matricescorresponding to those operations.Applying the s ame sequence of operations to theidentity m atrix, we obtain the matri xB = EkEk−1. . . E2E1I = EkEk−1. . . E2E1.Thus BA = I , which im plies that B = A−1.Problem Sol ve the matrix equation XA + B = X ,where A =4 −21 1, B =5 23 0.Since B is a 2×2 matrix, it fo llows that XA and Xare also 2×2 matrices.XA + B = X ⇐⇒ X − XA = B⇐⇒ X (I − A) = B ⇐⇒ X = B(I − A)−1provided that I −A is an invertible matrix.I −A =−3 2−1 0,I −A =−3 2−1 0,det(I −A) = (−3) · 0 − 2 · (−1) = 2,(I −A)−1=120 −21 −3,X = B(I −A)−1=5 23 0120 −21 −3=125 23 00 −21 −3=122 −160 −6=1 −80 −3.DeterminantsDeterminant is a s calar assigned to each square matrix.Notation. The determinant of a matrixA = (aij)1≤i,j≤nis denoted det A ora11a12. . . a1na21a22. . . a2n............an1an2. . . ann.Principal property: det A = 0 if and only if thematrix A is singular.Definition i n low dimensionsDefinition. det ( a) = a,a bc d= ad − bc,a11a12a13a21a22a23a31a32a33= a11a22a33+ a12a23a31+ a13a21a32−−a13a22a31− a12a21a33− a11a23a32.+ :* ∗ ∗∗* ∗∗ ∗ *,∗* ∗∗ ∗** ∗ ∗,∗ ∗** ∗ ∗∗ * ∗.− :∗ ∗*∗ * ∗* ∗ ∗,∗* ∗* ∗ ∗∗ ∗ *,* ∗ ∗∗ ∗ *∗ * ∗.Examples: 2×2 matrices1 00 1= 1,3 00 −4= − 12,−2 50 3= − 6,7 05 2= 14,0 −11 0= 1,0 04 1= 0,−1 3−1 3= 0,2 18 4= 0.a11a12a13a21a22a23a31a32a33= a11a22a33+ a12a23a31+ a13a21a32−−a13a22a31− a12a21a33− a11a23a32.a11a12a13a21a22a23a31a32a33→a11a12a13a11a12a21a22a23a21a22a31a32a33a31a32+1 2 3 ∗ ∗∗1 2 3 ∗∗ ∗1 2 3−∗ ∗ 1 2 3∗ 1 2 3 ∗1 2 3 ∗ ∗This rule works only for 3×3 matrices!Examples: 3×3 matrices3 −2 01 0 1−2 3 0= 3 · 0 · 0 + (−2) · 1 · (−2) + 0 · 1 · 3 −− 0 · 0 · (−2) − (−2) · 1 · 0 − 3 · 1 · 3 = 4 − 9 = −5,1 4 60 2 50 0 3= 1 · 2 · 3 + 4 · 5 · 0 + 6 · 0 · 0 −− 6 · 2 · 0 − 4 · 0 · 3 − 1 · 5 · 0 = 1 · 2 · 3 = 6.General definitionThe


View Full Document

TAMU MATH 304 - Lecture7web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lecture7web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture7web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture7web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?