DOC PREVIEW
TAMU MATH 304 - Lect3-07web

This preview shows page 1-2-3-4-5-6 out of 17 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 17 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 29:The Gram-Schmidt process (continued).Orthogonal setsLet V be a vector space with an inner product.Definition. Nonzero vectors v1, v2, . . . , vk∈ Vform an orthogonal set if they are orthogonal toeach other: hvi, vji = 0 for i 6= j.If, in addition, all vectors are of unit norm,kvik = 1, then v1, v2, . . . , vkis called anorthonormal set.Theorem Any orthogonal set is linearlyindependent.Orthogonal projectionTheorem Let V be an inner product space and V0be a finite-dimensional subspace of V . Then anyvector x ∈ V is uniquely represented as x = p + o,where p ∈ V0and o ⊥ V0.The component p is the orthogonal projection ofthe vector x onto the subspace V0. The distancefrom x to the subspace V0is kok.If v1, v2, . . . , vnis an orthogonal basis for V0thenp =hx, v1ihv1, v1iv1+hx, v2ihv2, v2iv2+ ··· +hx, vnihvn, vnivn.V0opxThe Gram-Schmidt orthogonalization processLet V be a vector space with an inner product.Suppose x1, x2, . . . , xnis a basis for V . Letv1= x1,v2= x2−hx2, v1ihv1, v1iv1,v3= x3−hx3, v1ihv1, v1iv1−hx3, v2ihv2, v2iv2,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vn= xn−hxn, v1ihv1, v1iv1− ··· −hxn, vn−1ihvn−1, vn−1ivn−1.Then v1, v2, . . . , vnis an orthogonal basis for V .Span(v1, v2) = Span(x1, x2)v3p3x3Any basisx1, x2, . . . , xn−→Orthogonal basisv1, v2, . . . , vnProperties of the Gram-Schmidt process:• vk= xk− (α1x1+ ··· + αk−1xk−1), 1 ≤ k ≤ n;• the span of v1, . . . , vkis the same as the spanof x1, . . . , xk;• vkis orthogonal to x1, . . . , xk−1;• vk= xk− pk, where pkis the orthogonalprojection of the vector xkon the subspace spannedby x1, . . . , xk−1;• kvkk is the distance from xkto the subspacespanned by x1, . . . , xk−1.NormalizationLet V be a vector space with an inner product.Suppose v1, v2, . . . , vnis an orthogonal basis for V .Let w1=v1kv1k, w2=v2kv2k,. . . , wn=vnkvnk.Then w1, w2, . . . , wnis an orthonormal basis for V .Theorem Any finite-dimensional vector space withan inner product has an orthonormal basis.Remark. An infinite-dimensional vector space withan inner product may or may not have anorthonormal basis.Problem. Let V0be a subspace of dimension k inRn. Let x1, x2, . . . , xkbe a basis for V0.(i) Find an orthogonal basis for V0.(ii) Extend it to an orthogonal basis for Rn.Approach 1. Extend x1, . . . , xkto a basis x1, x2, . . . , xnforRn. Then apply the Gram-Schmidt process to the extendedbasis. We shall obtain an orthogonal basis v1, . . . , vnfor Rn.By construction, Span(v1, . . . , vk) = Span(x1, . . . , xk) = V0.It follows that v1, . . . , vkis a basis for V0. Clearly, it isorthogonal.Approach 2. First apply the Gram-Schmidt process tox1, . . . , xkand obtain an orthogonal basis v1, . . . , vkfor V0.Secondly, find a basis y1, . . . , ymfor the orthogonalcomplement V⊥0and apply the Gram-Schmidt process to itobtaining an orthogonal basis u1, . . . , umfor V⊥0. Thenv1, . . . , vk, u1, . . . , umis an orthogonal basis for Rn.Problem. Let Π be the plane in R3spanned byvectors x1= (1, 2, 2) and x2= (−1, 0, 2).(i) Find an orthonormal basis for Π.(ii) Extend it to an orthonormal basis for R3.x1, x2is a basis for the plane Π. We can extend itto a basis for R3by adding one vector from thestandard basis. For instance, vectors x1, x2, andx3= (0, 0, 1) form a basis for R3because1 2 2−1 0 20 0 1=1 2−1 0= 2 6= 0.Using the Gram-Schmidt process, we orthogonalizethe basis x1= (1, 2, 2), x2= (−1, 0, 2), x3= (0, 0, 1):v1= x1= (1, 2, 2),v2= x2−hx2, v1ihv1, v1iv1= (−1, 0, 2) −39(1, 2, 2)= (−4/3, −2/3, 4/3),v3= x3−hx3, v1ihv1, v1iv1−hx3, v2ihv2, v2iv2= (0, 0, 1) −29(1, 2, 2) −4/34(−4/3, −2/3, 4/3)= (2/9, −2/9, 1/9).Now v1= (1, 2, 2), v2= (−4/3, −2/3, 4/3),v3= (2/9, −2/9, 1/9) is an orthogonal basis for R3while v1, v2is an orthogonal basis for Π. It remainsto normalize these vectors.hv1, v1i = 9 =⇒ kv1k = 3hv2, v2i = 4 =⇒ kv2k = 2hv3, v3i = 1/9 =⇒ kv3k = 1/3w1= v1/kv1k = (1/3, 2/3, 2/3) =13(1, 2, 2),w2= v2/kv2k = (−2/3, −1/3, 2/3) =13(−2, −1, 2),w3= v3/kv3k = (2/3, −2/3, 1/3) =13(2, −2, 1).w1, w2is an orthonormal basis for Π.w1, w2, w3is an orthonormal basis for R3.Problem. Find the distance from the pointy = (0, 0, 0, 1) to the subspace V ⊂ R4spannedby vectors x1= (1, −1, 1, −1), x2= (1, 1, 3, −1),and x3= (−3, 7, 1, 3).Let us apply the Gram-Schmidt process to vectorsx1, x2, x3, y. We should obtain an orthogonalsystem v1, v2, v3, v4. The desired distance will be|v4|.x1= (1, −1, 1, −1), x2= (1, 1, 3, −1),x3= (−3, 7, 1, 3), y = (0, 0, 0, 1).v1= x1= (1, −1, 1, −1),v2= x2−hx2, v1ihv1, v1iv1= (1, 1, 3, −1)−44(1, −1, 1, −1)= (0, 2, 2, 0),v3= x3−hx3, v1ihv1, v1iv1−hx3, v2ihv2, v2iv2= (−3, 7, 1, 3) −−124(1, −1, 1, −1) −168(0, 2, 2, 0)= (0, 0, 0, 0).The Gram-Schmidt process can be used to checklinear independence of vectors!The vector x3is a linear combination of x1and x2.V is a plane, not a 3-dimensional subspace.We should orthogonalize vectors x1, x2, y.˜v3= y −hy, v1ihv1, v1iv1−hy, v2ihv2, v2iv2= (0, 0, 0, 1) −−14(1, −1, 1, −1) −08(0, 2, 2, 0)= (1/4, −1/4, 1/4, 3/4).|˜v3| =14, −14,14,34=14|(1, −1, 1, 3)| =√124=√32.Problem. Find the distance from the pointz = (0, 0, 1, 0) to the plane Π that passes throughthe point x0= (1, 0, 0, 0) and is parallel to thevectors v1= (1, −1, 1, −1) and v2= (0, 2, 2, 0).The plane Π is not a subspace of R4as it does notpass through the origin. Let Π0= Span(v1, v2).Then Π = Π0+ x0.Hence the distance from the point z to the plane Πis the same as the distance from the point z − x0to the plane Π0.We shall apply the Gram-Schmidt process to vectorsv1, v2, z − x0. This will yield an orthogonal systemw1, w2, w3. The desired distance will be |w3|.v1= (1, −1, 1, −1), v2= (0, 2, 2, 0), z − x0= (−1, 0, 1, 0).w1= v1= (1, −1, 1, −1),w2= v2−hv2, w1ihw1, w1iw1= v2= (0, 2, 2, 0) as v2⊥ v1.w3= (z − x0) −hz − x0, w1ihw1, w1iw1−hz − x0, w2ihw2, w2iw2= (−1, 0, 1, 0) −04(1, −1, 1, −1) −28(0, 2, 2, 0)= (−1, −1/2, 1/2, 0).|w3| =−1, −12,12, 0=12|(−2, −1, 1, 0)|


View Full Document

TAMU MATH 304 - Lect3-07web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect3-07web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect3-07web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect3-07web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?