DOC PREVIEW
TAMU MATH 304 - Lecture13web

This preview shows page 1-2-3-4-5 out of 14 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 304–504Linear AlgebraLecture 13:Linear independence.Span: implicit definitionLet S be a subset of a vector space V .Definition. The span of the set S, denotedSpan(S), is the smallest subspace of V thatcontains S. That is,• Span(S) is a subspace of V ;• for any subspace W ⊂ V one hasS ⊂ W =⇒ Span(S) ⊂ W .Remark. The span of any set S ⊂ V is well defined(it is the intersection of all subspaces of V thatcontain S).Span: effective descriptionLet S be a subset of a vector space V .• If S = {v1, v2, . . . , vn} then Span(S) is the setof all linear combinations r1v1+ r2v2+ · · · + rnvn,where r1, r2, . . . , rn∈ R.• If S is an infinite set then Span(S) is the set ofall linear combinations r1u1+ r2u2+ · · · + rkuk,where u1, u2, . . . , uk∈ S and r1, r2, . . . , rk∈ R(k ≥ 1).• If S is the empty s et then Span(S) = {0}.Spanning setDefinition. A subset S o f a vector space V iscalled a spanning set for V if Span(S) = V .Examples.• Vectors e1= (1, 0, 0), e2= (0, 1, 0), ande3= (0, 0, 1) form a spanning set for R3as(x, y, z) = xe1+ ye2+ ze3.• Matrices1 00 0,0 10 0,0 01 0,0 00 1form a spanning set for M2,2(R) asa bc d= a1 00 0+ b0 10 0+ c0 01 0+ d0 00 1.Linear independenceDefinition. Let V be a vector space. Vectorsv1, v2, . . . , vk∈ V are called linearly dependent ifthey satisfy a relationr1v1+ r2v2+ · · · + rkvk= 0,where the coefficients r1, . . . , rk∈ R are not allequal to zero. Otherwise vectors v1, v2, . . . , vkarecalled linearly independent. T hat is, ifr1v1+r2v2+ · · · +rkvk= 0 =⇒ r1= · · · = rk= 0.An infinite set S ⊂ V is linearly dependent ifthere are some linearly dependent vectors v1, . . . , vk∈ S.Otherwise S is linearly independent.Theorem The following conditions are equiv alent:(i) vectors v1, . . . , vkare linearly dependent;(ii) one of vectors v1, . . . , vkis a linear combinationof the other k − 1 vectors.Proof: (i) =⇒ (ii) Suppose thatr1v1+ r2v2+ · · · + rkvk= 0,where ri6= 0 for some 1 ≤ i ≤ k. Thenvi= −r1riv1− · · · −ri −1rivi−1−ri +1rivi+1− · · · −rkrivk.(ii) =⇒ (i) Suppose thatvi= s1v1+ · · · + si−1vi−1+ si+1vi+1+ · · · + skvkfor some scalars sj. Thens1v1+ · · · + si−1vi−1− vi+ si+1vi+1+ · · · + skvk= 0.Examples of l inear independence• Vectors e1= (1, 0, 0), e2= (0, 1, 0), ande3= (0, 0, 1) in R3.xe1+ ye2+ ze3= 0 =⇒ (x, y, z) = 0=⇒ x = y = z = 0• Matrices E11=1 00 0, E12=0 10 0,E21=0 01 0, and E22=0 00 1.aE11+ bE12+ cE21+ dE22= O =⇒a bc d= O=⇒ a = b = c = d = 0Examples of l inear independence• Polynomi als 1, x, x2, . . . , xn.a0+ a1x + a2x2+ · · · + anxn= 0 identically=⇒ ai= 0 for 0 ≤ i ≤ n• The infinite set {1, x, x2, . . . , xn, . . . }.• Polynomi als p1(x) = 1, p2(x) = x − 1, andp3(x) = (x − 1)2.a1p1(x) + a2p2(x) + a3p3(x) = a1+ a2(x − 1) + a3(x − 1)2== (a1− a2+ a3) + (a2− 2a3)x + a3x2.Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically=⇒ a1− a2+ a3= a2− 2a3= a3= 0=⇒ a1= a2= a3= 0Problem Let v1= (1, 2, 0), v2= (3, 1, 1), andv3= (4, −7, 3). Determine whether vectorsv2, v2, v3are linearly independent.We have to check if there exist r1, r2, r3∈ R not allzero such that r1v1+ r2v2+ r3v3= 0.This vector equation is equivalent to a systemr1+ 3r2+ 4r3= 02r1+ r2− 7r3= 00r1+ r2+ 3r3= 01 3 402 1 −700 1 30The vectors v1, v2, v3are linearly dependent if andonly if the matrix A = (v1, v2, v3) is singular.We obtain that det A = 0.Theorem Vectors v1, v2, . . . , vm∈ Rnare linearlydependent whenever m > n.Proof: Let vj= (a1j, a2j, . . . , anj) for j = 1, 2, . . . , m.Then the vector identity t1v1+ t2v2+ · · · + tmvm= 0is equivalent to the systema11t1+ a12t2+ · · · + a1mtm= 0,a21t1+ a22t2+ · · · + a2mtm= 0,· · · · · · · · ·an1t1+ an2t2+ · · · + anmtm= 0.Vectors v1, v2, . . . , vmare columns of the matrix (aij).If m > n then the system is under-determined,therefore the zero solution is not unique.Spanning sets and linear dependenceLet v0, v1, . . . , vkbe vectors from a vector space V .Proposition If v0is a linear co mbination of vectorsv1, . . . , vkthenSpan(v0, v1, . . . , vk) = Span(v1, . . . , vk).Indeed, if v0= r1v1+ · · · + rkvk, thent0v0+ t1v1+ · · · + tkvk== (t0r1+ t1)v1+ · · · + (t0rk+ tk)vk.Corollary Any spanning set for a vector space isminimal if and only if it is linearly independent.Proposition Functions 1, ex, and e−xare linearlyindependent.Proof: Suppose that a + bex+ ce−x= 0 for somea, b, c ∈ R. We have to show that a = b = c = 0.x = 0 =⇒ a + b + c = 0x = 1 =⇒ a + be + ce−1= 0x = −1 =⇒ a + be−1+ ce = 0The matrix of the system is A =1 1 11 e e−11 e−1e.det A = e2− e−2− 2e + 2e−1== (e − e−1)(e + e−1) − 2(e − e−1) == (e−e−1)(e+e−1−2) = (e−e−1)(e1/2−e−1/2)26= 0.Hence the system has a unique solution a = b = c = 0.Proposition Functions 1, ex, and e−xare linearlyindependent.Alternative proo f: Suppose thata + bex+ ce−x= 0 for some a, b, c ∈ R.Differentiate this identity twice:bex− ce−x= 0,bex+ ce−x= 0.It follows that bex= ce−x= 0 =⇒ b = c = 0.Then a = 0 as well.Theorem Let λ1, λ2, . . . , λkbe distinct realnumbers. Then the functions eλ1x, eλ2x, . . . , eλkxare linearly independent.Furthermore, the s et o f functions xmeλix,1 ≤ i ≤ k, m = 0, 1, 2, . . . i s also


View Full Document

TAMU MATH 304 - Lecture13web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lecture13web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture13web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture13web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?