New version page

# TAMU MATH 304 - Lecture 28

Documents in this Course

12 pages

6 pages

31 pages

15 pages

2 pages

12 pages

28 pages

9 pages

23 pages

2 pages

13 pages

16 pages

40 pages

15 pages

14 pages

23 pages

10 pages

29 pages

17 pages

23 pages

41 pages

26 pages

2 pages

12 pages

15 pages

20 pages

2 pages

19 pages

32 pages

15 pages

15 pages

24 pages

14 pages

21 pages

16 pages

14 pages

21 pages

16 pages

30 pages

18 pages

17 pages

6 pages

21 pages

40 pages

13 pages

12 pages

17 pages

7 pages

13 pages

23 pages

16 pages

23 pages

16 pages

15 pages

13 pages

27 pages

39 pages

22 pages

16 pages

20 pages

2 pages

12 pages

29 pages

16 pages

32 pages

7 pages

20 pages

29 pages

15 pages

16 pages

2 pages

11 pages

14 pages

16 pages

17 pages

24 pages

23 pages

15 pages

12 pages

15 pages

16 pages

11 pages

10 pages

14 pages

7 pages

18 pages

30 pages

20 pages

21 pages

24 pages

18 pages

15 pages

20 pages

17 pages

18 pages

18 pages

16 pages

29 pages

12 pages

19 pages

19 pages

30 pages

15 pages

5 pages

12 pages

15 pages

2 pages

12 pages

## This preview shows page 1-2-3-4-5 out of 15 pages.

View Full Document
Do you want full access? Go Premium and unlock all 15 pages.
Do you want full access? Go Premium and unlock all 15 pages.
Do you want full access? Go Premium and unlock all 15 pages.
Do you want full access? Go Premium and unlock all 15 pages.
Do you want full access? Go Premium and unlock all 15 pages.

Unformatted text preview:

MATH 304Linear AlgebraLecture 28:Inner product spaces.NormThe notion of norm generalizes the notion of lengthof a vector in Rn.Definition. Let V be a vector space. A functionα : V → R is called a norm on V if it has thefollowing properties:(i) α(x) ≥ 0, α(x) = 0 only for x = 0 (positivi ty)(ii) α(rx) = |r|α(x) for all r ∈ R (homogeneity)(iii) α(x + y) ≤ α(x) + α(y) (triangle inequality)Notation. The norm of a vector x ∈ V is usuallydenoted kxk. Different norms on V aredistinguished by subscripts, e.g., kxk1and kxk2.Examples. V = Rn, x = (x1, x2, . . . , xn) ∈ Rn.• kxk∞= max(|x1|, |x2|, . . . , |xn|).• kxkp=|x1|p+ |x2|p+ ··· + |xn|p1/p, p ≥ 1.In particular, kxk2= |x|.Examples. V = C [a, b], f : [a, b] → R.• kf k∞= maxa≤x≤b|f (x)|.• kf kp=Zba|f (x)|pdx1/p, p ≥ 1 .Inner productThe notion of inner product generalizes the noti onof dot product of vectors in Rn.Definition. Let V be a vector space. A functionβ : V ×V → R, usually denoted β(x, y) = hx, yi, iscalled an inner product on V if it is positive,symmetric, and bilinear. That is, if(i) hx, xi ≥ 0, hx, xi = 0 only for x = 0 (positivity)(ii) hx, yi = hy, xi (symmetry)(iii) hrx, yi = r hx, yi (homogeneity)(iv) hx + y, zi = hx, zi + hy, zi (distributive law)An inner product space is a vector space endowedwith an inner product.Examples. V = Rn.• hx, yi = x · y = x1y1+ x2y2+ ··· + xnyn.• hx, yi = d1x1y1+ d2x2y2+ ··· + dnxnyn,where d1, d2, . . . , dn> 0.Example. V = Pn, polynom ials of degree < n.• hp, qi = p(x1)q(x1) + p(x2)q(x2) + ···+ p(xn)q(xn),where x1, x2, . . . , xnare di stinct points on R.We have hp, pi = 0 =⇒ p = 0 since a nonzeropolynomi al of degree less than n cannot have nroots.Examples. V = C [a, b].• hf , gi =Zbaf (x)g(x) dx.• hf , gi =Zbaf (x)g (x)w (x) dx,where w is bounded, piecewis e continuous, andw > 0 everywhere on [a, b].w is call ed the weight function.Theorem Suppose hx, yi is an inner product on avector space V . Thenhx, yi2≤ hx, xihy, yi for all x, y ∈ V .Proof: For any t ∈ R let vt= x + ty. Thenhvt, vti = hx, xi + 2thx, yi+ t2hy, yi.The right-hand side is a quadratic polynomial in t(provided that y 6= 0). Since hvt, vti ≥ 0 for all t,the discrim inant D is no npositive. ButD = 4hx, yi2− 4hx, xihy, yi.Cauchy-Schwarz Inequality:|hx, yi| ≤phx, xiphy, yi.Cauchy-Schwarz Inequality:|hx, yi| ≤phx, xiphy, yi.Corollary 1 |x · y| ≤ |x||y| for all x, y ∈ Rn.Equivalently, for all xi, yi∈ R,(x1y1+ ··· + xnyn)2≤ (x21+ ··· + x2n)(y21+ ··· + y2n).Corollary 2 For any f , g ∈ C [ a, b],Zbaf (x)g (x) dx2≤Zba|f (x)|2dx ·Zba|g( x)|2dx.Norms induced by inner productsTheorem Suppose hx, yi is an inner product on avector space V . Then kxk =phx, xi is a norm.Proof: Positi vity is obvious. Homogeneity:krxk =phrx, rxi =pr2hx, xi = |r|phx, xi.Triangle inequality (follows fro m Cauchy-Schwarz’s):kx + yk2= hx + y, x + yi= hx, xi + hx, yi + hy, xi + hy, yi≤ hx, xi+ |hx, yi| + |hy, xi| + hy, yi≤ kxk2+ 2kxkkyk+ kyk2= (kxk + kyk)2.Examples. • The length of a vector in Rn,|x| =px21+ x22+ ··· + x2n,is the norm induced by the dot productx · y = x1y1+ x2y2+ ··· + xnyn.• The norm kf k2=Zba|f (x)|2dx1/2on thevector space C[a, b] is induced by the inner producthf , gi =Zbaf (x)g (x) dx.AngleSince |hx, yi| ≤ k xkkyk, we can defi ne the anglebetween no nz ero vectors in any vector space withan inner product (and induced norm):∠(x, y) = arccoshx, yikxkkyk.Then hx, yi = kxkkykcos ∠(x, y).In particular, vectors x and y are orthogonal(denoted x ⊥ y) if hx, yi = 0.Problem. Find the angle between functionsf1(x) = x and f2(x) = x2in the inner space C[0, 1]with the inner pr oducthf , gi =Z10f (x)g (x) dx.hf1, f2i =Z10x · x2dx =14,hf1, f1i =Z10x2dx =13, hf2, f2i =Z10(x2)2dx =15.cos ∠(f1, f2) =hf1, f2ikf1kkf2k=1/4p1/3p1/5=√154sin ∠(f1, f2) =p1 − cos2∠(f1, f2) = 1/4∠(f1, f2) = arcsin14xx + yyPythagorean Theorem:x ⊥ y =⇒ kx + yk2= kxk2+ kyk2Proof: kx + yk2= hx + y, x + yi= hx, xi + hx, yi + hy, xi + hy, yi= hx, xi + hy, yi = kxk2+ kyk2.xxx + yx − yyyParallelogram Identity:kx + yk2+ kx − yk2= 2kxk2+ 2kyk2Proof: kx+yk2= hx+y, x+yi = hx, xi + hx, yi+ hy, xi+ h y, yi.Similarly, kx−yk2= hx, xi − hx, yi−hy, xi + hy, yi.Then kx+yk2+ kx−yk2= 2hx, xi+ 2hy, yi = 2kxk2+ 2kyk2.Example. Norms on Rn, n ≥ 2:• kxk∞= max(|x1|, |x2|, . . . , |xn|),• kxkp=|x1|p+ |x2|p+ ··· + |xn|p1/p, p ≥ 1.Theorem The norms k xk∞and kxkp, p 6= 2 donot satisfy the Parallelogram Identity. Hence theyare not induced by any inner product on Rn.Proof: A counterexample to the Parallelogram Identity isprovided by vectors e1= (1, 0, 0, . . . , 0) and e2= (0, 1, 0, . . . , 0).ke1k∞= k e2k∞= 1, ke1kp= k e2kp= 1 for any p ≥ 1.ke1+ e2k∞= ke1− e2k∞= 1,ke1+ e2kp= k e1− e2kp= 21/pfor any p ≥ 1.Thus 2ke1k2∞+ 2ke2k2∞= 2 ke1k2p+ 2ke2k2p= 4.On the other hand, ke1+ e2k2∞+ ke1− e2k2∞= 2 6= 4 andke1+ e2k2p+ ke1− e2k2p= 2(21/p)2= 21+2/p6= 4 unless p =

View Full Document