New version page

# TAMU MATH 304 - Lecture 23

Documents in this Course

12 pages

6 pages

31 pages

15 pages

2 pages

12 pages

28 pages

9 pages

23 pages

2 pages

13 pages

16 pages

40 pages

15 pages

14 pages

23 pages

10 pages

29 pages

17 pages

23 pages

41 pages

26 pages

2 pages

12 pages

15 pages

20 pages

2 pages

19 pages

32 pages

15 pages

15 pages

24 pages

14 pages

21 pages

16 pages

14 pages

21 pages

16 pages

30 pages

18 pages

17 pages

6 pages

21 pages

40 pages

13 pages

12 pages

17 pages

7 pages

13 pages

23 pages

16 pages

23 pages

16 pages

15 pages

13 pages

27 pages

39 pages

22 pages

16 pages

20 pages

2 pages

12 pages

29 pages

16 pages

32 pages

7 pages

20 pages

29 pages

15 pages

16 pages

2 pages

11 pages

14 pages

16 pages

17 pages

24 pages

23 pages

15 pages

12 pages

15 pages

16 pages

11 pages

15 pages

14 pages

7 pages

18 pages

30 pages

20 pages

21 pages

24 pages

18 pages

15 pages

20 pages

17 pages

18 pages

18 pages

16 pages

29 pages

12 pages

19 pages

19 pages

30 pages

15 pages

5 pages

12 pages

15 pages

2 pages

12 pages

## This preview shows page 1-2-3 out of 10 pages.

View Full Document
Do you want full access? Go Premium and unlock all 10 pages.
Do you want full access? Go Premium and unlock all 10 pages.
Do you want full access? Go Premium and unlock all 10 pages.

Unformatted text preview:

MATH 304Linear AlgebraLecture 23:Similarity of matrices.Basis and coordinatesIf {v1, v2, . . . , vn} is a basis for a vector space V ,then any vector v ∈ V has a unique representationv = x1v1+ x2v2+ · · · + xnvn,where xi∈ R. The coefficients x1, x2, . . . , xnarecalled the coordinates of v with respect to theordered basi s v1, v2, . . . , vn.The mappingvector v 7→ its coordinates (x1, x2, . . . , xn)provides a one-to-one correspondence between Vand Rn. This m apping is linear.Change of coordinatesLet V be a vector space.Let v1, v2, . . . , vnbe a basis for V and g1: V → Rnbe thecoordinate mapping corresponding to this basis.Let u1, u2, . . . , unbe another basis for V and g2: V → Rnbethe coordinate mapping corresp onding to this basis.Vg1ւg2ցRn−→ RnThe composition g2◦g−11is a linear mapping of Rnto itself.It is represented as v 7→ Uv, where U is an n×n matrix.U is called the transition matrix from v1, v2. . . , vntou1, u2. . . , un. Columns of U are coordinates of the vectorsv1, v2, . . . , vnwith respect to the basis u1, u2, . . . , un.Matrix of a linear mappingLet V , W be vector spaces and f : V → W be a linear map.Let v1, v2, . . . , vnbe a basis for V and g1: V → Rnbe thecoordinate mapping corresponding to this basis.Let w1, w2, . . . , wmbe a basis for W and g2: W → Rmbethe coordinate mapping corresp onding to this basis.Vf−→ Wg1yyg2Rn−→ RmThe composition g2◦f ◦g−11is a linear mapping of Rnto Rm.It is represented as v 7→ Av, where A is an m×n matrix.A is called the matrix of f with respect to bases v1, . . . , vnand w1, . . . , wm. Columns of A are coordinates of vectorsf (v1), . . . , f (vn) with respect to the basis w1, . . . , wm.Change of basis for a linear operatorLet L : V → V be a linear operator on a vector space V .Let A be the matrix of L relative to a basis a1, a2, . . . , anforV . Let B be the matrix of L relative to another basisb1, b2, . . . , bnfor V .Let U be the transition matrix from the basis a1, a2, . . . , antob1, b2, . . . , bn.a-coordinates of vA−→ a-coordinates of L(v)UyyUb-coordinates of vB−→ b-coordinates of L(v)It follows that UA = BU.Then A = U−1BU and B = UAU−1.Problem. Let A =1 1 −11 1 10 0 2.Find the matrix of the linear operator L : R3→ R3,L(x) = Ax with respect to the basis v1= (−1, 1 , 0),v2= (1, 1 , 0), v3= (−1, 0 , 1).Let B be the desired matrix. T he columns of B arecoordinates of the vectors L(v1), L(v2), L(v3) with respect tothe basis v1, v2, v3.L(v1) = (0, 0, 0), L(v2) = (2, 2, 0) = 2v2,L(v3) = (−2, 0, 2) = 2v3.Thus B =0 0 00 2 00 0 2.Problem. Let A =1 1 −11 1 10 0 2. Find A16.It f ollows from the solution of the previous problemthat A = UBU−1, whereB =0 0 00 2 00 0 2, U =−1 1 −11 1 00 0 1.Note that A2= AA = UBU−1UBU−1= UB2U−1,A3= A2A = UB2U−1UBU−1= UB3U−1, and so on.In particular, A16= UB16U−1.Clearly, B16= diag(0, 216, 216) = 215B.Hence A16= U(215B)U−1= 215UBU−1= 215A= 32768 A.A16=32768 32768 −3276832768 32768 327680 0 65536.SimilarityDefinition. An n×n matrix B is said to be similarto an n×n matrix A if B = S−1ASfor somenonsingular n×n matrix S.Remark. Two n×n matrices are similar if and onlyif they represent the same linear operator on Rnwith respect to s ome bases.Theorem Si milarity is an equivalence relation, i.e.,(i) any square matri x A is similar to itself ;(ii) if B is similar to A, then A is similar to B;(iii) if A is simil ar to B and B is s imilar to C , thenA is similar to C .Theorem Si milarity is an equivalence relation, i.e.,(i) any square matri x A is similar to itself ;(ii) if B is similar to A, then A is similar to B;(iii) if A is simil ar to B and B is s imilar to C , thenA is similar to C .Proof: (i) A = I−1AI .(ii) If B = S−1AS then A = SBS−1= (S−1)−1BS−1.(iii) If A = S−1BS and B = T−1CT thenA = S−1T−1CTS = (TS)−1C (TS).Theorem If A and B are si milar matri ces thenthey have the same (i) determinant, (ii) trace = thesum of diagonal entries , (iii) rank, and (iv )

View Full Document
Unlocking...

Join to view Lecture 23 2 2 and access 3M+ class-specific study document.

or