DOC PREVIEW
TAMU MATH 304 - Lect2-08web

This preview shows page 1-2-3-4-5 out of 15 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 18:Basis and coordinates.Change of coordinates.Basis and dimensionDefinition. Let V be a vector space. A linearlyindependent spanning set for V is called a basis.Theorem Any vector space V has a bas is. If Vhas a finite basis, then all bases for V are finite andhave the s ame number of elements (called thedimension of V ).Example. Vectors e1= (1, 0, 0, . . . , 0, 0),e2= (0, 1, 0, . . . , 0, 0),. . . , en= (0, 0, 0, . . . , 0, 1)form a basis for Rn(called standard) since(x1, x2, . . . , xn) = x1e1+ x2e2+ · · · + xnen.Basis and coordinatesIf {v1, v2, . . . , vn} is a basis for a vector space V ,then any vector v ∈ V has a unique representationv = x1v1+ x2v2+ · · · + xnvn,where xi∈ R. The coeffici ents x1, x2, . . . , xnarecalled the coordinates of v with respect to theordered basis v1, v2, . . . , vn.The mappingvector v 7→ its coordinates (x1, x2, . . . , xn)is a one-to-one correspo ndence between V and Rn.This correspondence r es pects linear operations in Vand in Rn.Examples. • Coordinates of a vectorv = (x1, x2, . . . , xn) ∈ Rnrelative to the s tandardbasis e1= (1, 0, . . . , 0, 0), e2= (0, 1, . . . , 0, 0),. . . ,en= (0, 0, . . . , 0, 1) are (x1, x2, . . . , xn).• Coordinates of a matri xa bc d∈ M2,2(R)relative to the bas is1 00 0,0 01 0,0 10 0,0 00 1are (a, c, b, d).• Coordinates of a polynomialp(x) = a0+ a1x + · · · + an−1xn−1∈ Pnrelative tothe basis 1, x, x2, . . . , xn−1are (a0, a1, . . . , an−1).Vectors u1=(3, 1) and u2=(2, 1) form a basis for R2.Problem 1. Find coordinates of the vectorv = (7, 4) with respect to the basis u1, u2.The desired coordinates x, y satisfyv = xu1+yu2⇐⇒3x + 2y = 7x + y = 4⇐⇒x = −1y = 5Problem 2. Find the vector w whose coordinateswith respect to the basis u1, u2are (7, 4).w = 7u1+ 4u2= 7(3, 1) + 4(2, 1) = (29, 11)Change of coordinatesGiven a vector v ∈ R2, let (x, y ) be its standardcoordinates, i.e., coordinates with respect to thestandard basis e1= (1, 0), e2= (0, 1), and let(x′, y′) be its coordinates with respect to the basi su1= (3, 1), u2= (2, 1).Problem. Find a relation between (x, y ) and (x′, y′).By definition, v = xe1+ y e2= x′u1+ y′u2.In standard coordinates,xy= x′31+ y′21=3 21 1x′y′=⇒x′y′=3 21 1−1xy=1 −2−1 3xyChange of coordinates in RnThe usual (standard) coordinates of a vectorv = (x1, x2, . . . , xn) ∈ Rnare coordinates relative to thestandard basis e1= (1, 0, . . . , 0, 0), e2= (0, 1, . . . , 0, 0),. . . ,en= (0, 0, . . . , 0, 1).Let u1, u2, . . . , unbe another basis for Rnand (x′1, x′2, . . . , x′n)be the coordinates of the same vector v with respect to thisbasis.Problem 1. Given the standard coordinates(x1, x2, . . . , xn), find the nonstandard coordinates(x′1, x′2, . . . , x′n).Problem 2. Given the nonstandard coordinates(x′1, x′2, . . . , x′n), find the standard coordinates(x1, x2, . . . , xn).It turns out thatx1x2...xn=u11u12. . . u1nu21u22. . . u2n............un1un2. . . unnx′1x′2...x′n.The matrix U = (uij) does not depend on the v ector v.Columns of U are coordinates of v ectorsu1, u2, . . . , unwith respect to the standard basis.U is cal led the transition matrix from the basisu1, u2, . . . , unto the standard basis e1, e2, . . . , en.This solves Problem 2. To s olve Problem 1, we haveto use the inverse matrix U−1, which is thetransition matrix from e1, . . . , ento u1, . . . , un.Problem. Find coordinates of the vectorx = (1, 2, 3) with respect to the basisu1= (1, 1, 0) , u2= (0, 1, 1) , u3= (1, 1, 1) .The nonstandard coordinates (x′, y′, z′) of x satisfyx′y′z′= U123,where U is the transition matrix from the standard basise1, e2, e3to the basis u1, u2, u3.The transition matrix from u1, u2, u3to e1, e2, e3isU0= (u1, u2, u3) =10 11 1 10 1 1.The transition matrix from e1, e2, e3to u1, u2, u3is theinverse matrix: U = U−10.The inverse matrix can be computed using row reduction.(U0| I ) =1 0 11 0 01 1 10 1 00 1 10 0 1→1 0 1 1 0 00 1 0−1 1 00 1 10 0 1→1 0 11 0 00 1 0−1 1 00 0 11 −1 1→1 0 00 1 −10 1 0−1 1 00 0 11 −1 1= (I | U−10)Thusx′y′z′=0 1 −1−1 1 01 −1 1123=−112.Change of coordinates: general caseLet V be a vector space of dimension n.Let v1, v2, . . . , vnbe a basis for V and g1: V → Rnbe thecoordinate mapping corresponding to this basis.Let u1, u2, . . . , unbe another basis for V and g2: V → Rnbe the coordinate mapping corresponding to this basis.Vg1ւg2ցRn−→ RnThe composition g2◦g−11is a transformation of Rn.It has the form x 7→ Ux, where U is an n ×n matrix.U is called the transition matrix from v1, v2. . . , vntou1, u2. . . , un. Columns of U are coordinates of the vectorsv1, v2, . . . , vnwith respect to the basis u1, u2, . . . , un.Problem. Find the transition matrix from thebasis p1(x) = 1, p2(x) = x + 1, p3(x) = (x + 1)2to the basis q1(x) = 1, q2(x) = x, q3(x) = x2forthe vector space P3.We have to find coordinates of the po lynomialsp1, p2, p3with respect to the basis q1, q2, q3:p1(x) = 1 = q1(x),p2(x) = x + 1 = q1(x) + q2(x),p3(x) = (x+1)2= x2+2x+1 = q1(x)+2q2(x)+q3(x).Hence the transition matrix is1 1 10 1 20 0 1.Thus the polyno mial identitya1+ a2(x + 1) + a3(x + 1)2= b1+ b2x + b3x2is equivalent to the relationb1b2b3=1 1 10 1 20 0 1a1a2a3.Problem. Find the transition matrix from thebasis v1= (1, 2, 3) , v2= (1, 0, 1) , v3= (1, 2, 1) tothe basi s u1= (1, 1, 0), u2= (0, 1, 1), u3= (1, 1, 1) .It is convenient to make a two-step transition:first from v1, v2, v3to e1, e2, e3, and then f rome1, e2, e3to u1, u2, u3.Let U1be the transitio n matrix from v1, v2, v3toe1, e2, e3and U2be the transitio n matrix fromu1, u2, u3to e1, e2, e3:U1=1 1 12 0 23 1 1, U2=1 0 11 1 10 1 1.Basis v1, v2, v3=⇒ coordinates xBasis e1, e2, e3=⇒ coordinates U1xBasis u1, u2, u3=⇒ coordinates U−12(U1x)=(U−12U1)xThus the transition matrix from v1, v2, v3tou1, u2, u3is U−12U1.U−12U1=1 0 11 1 10 1 1−11 1 12 0 23 1 1=0 1 −1−1 1 01 −1 11 1 12 0 23 1 1=−1 …


View Full Document

TAMU MATH 304 - Lect2-08web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect2-08web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect2-08web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect2-08web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?