DOC PREVIEW
TAMU MATH 304 - Lect3-12web

This preview shows page 1-2-3-27-28-29 out of 29 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 304Linear AlgebraLecture 34:Review for Test 2.Topics for Test 2Coordinates and linear transformations (Leon 3.5, 4.1–4.3)• Coordinates relative to a basis• Change of basis, transition matrix• Matrix transformations• Matrix of a linear ma ppingOrthogonality (Leon 5.1–5.6)• Inner products and norms• Orthogonal complement, orthogonal projection• Least squares problems• The Gram-Schmidt orthogonalization processEigenvalues and eigenvectors (Leon 6.1, 6.3)• Eigenvalues, eigenvectors, eigenspaces• Characteristic polynomial• DiagonalizationSample problems for Test 2Problem 1 (15 pts.) Let M2,2(R) denote the v ector spaceof 2 × 2 matrices with real entries. Consider a linear operatorL : M2,2(R) → M2,2(R) given byLx yz w=x yz w1 23 4.Find the matrix of the operator L with respect to the basisE1=1 00 0, E2=0 10 0, E3=0 01 0, E4=0 00 1.Problem 2 (20 pts.) Find a linear polynomial which is thebest least squares fit to the following data:x−2 −1 0 1 2f (x) −3 −2 1 2 5Problem 3 (25 pts.) Let V be a subspace of R4spannedby the vectors x1= (1, 1, 1, 1) and x2= (1, 0, 3, 0).(i) Find an orthonormal basis f or V .(ii) Find an orthonormal basis for the orthogonal complementV⊥.Problem 4 (30 pts.) Let A =1 2 01 1 10 2 1.(i) Find all eigenvalues of the matrix A.(ii) For each eigenvalue of A, find an associated eigenvector.(iii) Is the matrix A diagonalizable? Explain.(iv) Find all eigenvalues of the matrix A2.Bonus Problem 5 (15 pts.) Let L : V → W be a linearmapping of a finite-dimensional vector space V to a vectorspace W . Show thatdim Range(L) + dim ker(L) = dim V .Problem 1. Let M2,2(R) denote the v ector space o f 2×2matrices with real entries. Consider a linear operatorL : M2,2(R) → M2,2(R) given byLx yz w=x yz w1 23 4.Find the matrix of the operator L with respect to the basisE1=1 00 0, E2=0 10 0, E3=0 01 0, E4=0 00 1.Let MLdenote the desired matrix.By definition, MLis a 4×4 ma trix whose columns arecoordinates of the matrices L(E1), L(E2), L(E3), L(E4)with respect to the basis E1, E2, E3, E4.L(E1) =1 00 01 23 4=1 20 0= 1E1+ 2 E2+ 0 E3+ 0 E4,L(E2) =0 10 01 23 4=3 40 0= 3E1+ 4 E2+ 0 E3+ 0 E4,L(E3) =0 01 01 23 4=0 01 2= 0E1+0E2+1E3+2E4,L(E4) =0 00 11 23 4=0 03 4= 0E1+0E2+3E3+4E4.It follows thatML=1 3 0 02 4 0 00 0 1 30 0 2 4.Thus the relationx1y1z1w1=x yz w1 23 4is equivalent to the relationx1y1z1w1=1 3 0 02 4 0 00 0 1 30 0 2 4xyzw.Problem 2. Find a linear polynomial which is the best leastsquares fit to the following data:x−2 −1 0 1 2f (x) −3 −2 1 2 5We are looking for a function f (x) = c1+ c2x, where c1, c2are unknown coefficients. The data of the problem give riseto an overdetermined system of linear equations in variables c1and c2:c1− 2c2= −3,c1− c2= −2,c1= 1,c1+ c2= 2,c1+ 2c2= 5.This system is inconsistent.We can represent the system as a matrix equation Ac = y,whereA =1 −21 −11 01 11 2, c =c1c2, y =−3−2125.The least squares solution c of the above system is a solutionof the normal system ATAc = ATy:1 1 1 1 1−2 −1 0 1 21 −21 −11 01 11 2c1c2=1 1 1 1 1−2 −1 0 1 2−3−2125⇐⇒5 00 10c1c2=320⇐⇒c1= 3/5c2= 2Thus the function f (x) =35+ 2x is the best least squares fitto the above data among linear polynomials.Problem 3. Let V be a subspace of R4spanned by thevectors x1= (1, 1, 1, 1) and x2= (1, 0, 3, 0).(i) Find an orthonormal basis f or V .First we apply the Gram-Schmidt orthogonalization process tovectors x1, x2and obtain an orthogonal basis v1, v2for thesubspace V :v1= x1= (1, 1, 1, 1 ),v2= x2−x2· v1v1· v1v1= (1, 0, 3, 0)−44(1, 1, 1, 1) = (0, −1, 2, −1).Then we normalize vectors v1, v2to obtain an orthonormalbasis w1, w2for V :kv1k = 2 =⇒ w1=v1kv1k=12(1, 1, 1, 1)kv2k =√6 =⇒ w2=v2kv2k=1√6(0, −1, 2, −1)Problem 3. Let V be a subspace of R4spanned by thevectors x1= (1, 1, 1, 1) and x2= (1, 0, 3, 0).(ii) Find an orthonormal basis for the orthogonal complementV⊥.Since the subspace V is spanned by vectors (1, 1, 1, 1) and(1, 0, 3, 0), it is the row space of the matrixA =1 1 1 11 0 3 0.Then the orthogonal complement V⊥is the nullspace of A.To find the nullspace, we convert the matrix A to reduced rowechelon form:1 1 1 11 0 3 0→1 0 3 01 1 1 1→1 0 3 001 −2 1.Hence a vector (x1, x2, x3, x4) ∈ R4belongs to V⊥if and onlyif1 0 3 00 1 −2 1x1x2x3x4=00⇐⇒x1+ 3x3= 0x2− 2x3+ x4= 0⇐⇒x1= −3x3x2= 2x3− x4The general solution of the system is (x1, x2, x3, x4) == (−3t, 2t − s, t, s) = t(−3, 2, 1, 0) + s(0, −1, 0, 1), wheret, s ∈ R.It follows that V⊥is spanned by vectors x3= (0, −1, 0, 1)and x4= (−3, 2, 1, 0 ) .The vectors x3= (0, −1, 0, 1 ) and x4= (−3, 2, 1, 0 ) form abasis for the subspace V⊥.It remains to orthogonalize and normalize this basis:v3= x3= (0, −1, 0, 1 ) ,v4= x4−x4· v3v3· v3v3= (−3, 2, 1, 0 ) −−22(0, −1, 0, 1)= (−3, 1, 1 , 1),kv3k =√2 =⇒ w3=v3kv3k=1√2(0, −1, 0, 1),kv4k =√12 = 2√3 =⇒ w4=v4kv4k=12√3(−3, 1, 1, 1).Thus the vectors w3=1√2(0, −1, 0, 1) andw4=12√3(−3, 1, 1, 1) form an orthonormal basis for V⊥.Problem 3. Let V be a subspace of R4spanned by thevectors x1= (1, 1, 1, 1 ) a nd x2= (1, 0, 3, 0).(i) Find an orthonormal basis f or V .(ii) Find an orthonormal basis for the orthogonal complementV⊥.Alternative solution: First we extend the set x1, x2to a basisx1, x2, x3, x4for R4. Then we orthogonalize and normalizethe latter. This yields an orthonormal basis w1, w2, w3, w4for R4.By construction, w1, w2is an orthonormal basis for V .It follows that w3, w4is an orthonormal basis for V⊥.The set x1= (1, 1, 1, 1), x2= (1, 0, 3, 0 ) can be extended toa basis for R4by adding two vectors from the standard basis.For example, we can add vectors e3= (0, 0, 1, 0 ) ande4= (0, 0, 0, 1). To show that x1, x2, e3, e4is indeed a basisfor R4, we check that the matrix whose rows are these vectorsis nonsingular:1 1 1 11 0 3 00 0


View Full Document

TAMU MATH 304 - Lect3-12web

Documents in this Course
quiz1

quiz1

2 pages

4-2

4-2

6 pages

5-6

5-6

7 pages

Lecture 9

Lecture 9

20 pages

lecture 8

lecture 8

17 pages

5-4

5-4

5 pages

Load more
Download Lect3-12web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect3-12web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect3-12web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?