Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/termsaaacosφφφyr2rr1xI2I16.013 - Electromagnetics and Applications Fall 2005 Lecture 20 - Dipole Arrays Prof. Markus Zahn December 1, 2005 I. Two Element Array in θ = π 2 plane (x-y plane) Far field (kr � 1, r � a) ˆπ Eˆ1 e−jkr1 Eˆ2 e−jkr2 π Eθ(r, θ =2 , φ) = jkr1 + jkr2 = ηHˆφ(r, θ =2 , φ) Eˆ1 Iˆ1dlk2η = − 4π Eˆ2 = − Iˆ2dlk2η 4π r2 ≈ r + a cos(φ), r1 ≈ r − a cos(φ) Eˆθ(r, θ = π, φ) = ηHˆφ(r, θ = π, φ) ≈ − k�2ηdl e−jkr � Iˆ1e +jka cos(φ) + Iˆ2e−jka cos(φ) � 2 24πj�kr � �� � � �� � array factor element factor Iejχ ˆAssume: Iˆ1 = I, ˆIˆ2 =ˆEˆ1 = E0, Eˆ2 = Eˆ0ejχ ⇒ Eθ(r, θ = π, φ) = ηHˆφ(r, θ = π, φ) = Eˆ0 e−jkr � e +jka cos(φ) + ejχe−jka cos(φ) � 2 2 jkr Eˆ0 e−jkr jχ/2 � e−j( χ 2 −ka cos(φ)) + ej( χ 2 −ka cos(φ)) � = ejkr � �� � 2 cos(− χ 2 +ka cos(φ)) =2Eˆ0 e−jkrejχ/2 cos � χ + ka cos(φ) � jkr − 2 � π � 1 Eˆθ2 2|Eˆ02 � χ� 2Sr(t, θ =2 , φ) =2 | η |= η(kr )|2 cos ka cos(φ) − 2 1 Image by MIT OpenCourseWare.Maxima: ka cos(φ) − χ 2 = ±mπ, m = 0, 1, 2, . . . Minima: ka cos(φ) − χ = ±(2m + 1)π , m = 0, 1, 2, . . . 2 2 Case Studies: Broadside: λ π2a = , χ = 0, ka = 2 2 2|Eˆ0|2 cos2 �π cos(φ) � �Sr� = η(kr )2 2 Endfire: λ π2a = , χ = π, ka = 2 2 �Sr� =2|Eˆ0|2 cos2 �π (cos(φ) − 1) � η(kr )2 2 λ 2πa 2πa π2a = ka = = = 2 ⇒ λ 4a 2 2a = λ ka = π⇒ λ π χ χ2a =2 ⇒ 2 cos(φ) − 2= ±mπ (maxima) ⇒ cos(φ) = π ± 2m π χ π χ 2 cos(φ) − 2= ±(2m + 1)2 (minima) ⇒ cos(φ) = π ± (2m + 1) 2From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.λ = 4a χ cos(φmax) cos(φmin) φmax φmin ± 0, π Broadside ±75.5◦ ±138.6◦ ±60◦ ±120◦ ±41.4◦ ±104.5◦ 82.8◦, 151◦ 51◦, 112◦ π ± (2m + 1) χ cos(φmax) cos(φmin) φmax φmin 0, ±90◦, 180◦ ±60◦ 75.5◦, 138.6◦ 41.4◦, 104.5◦ 68.0◦, 128.7◦ 29.0◦, 97.2◦ 0, 1 60◦, 120◦ 90◦, 0◦ − − − λ = 2a cos(φmax) =⇒ 3−π 1 0 0, π ±90.◦ Endfire π ± m, cos(φmin) =13π 2π 1 2χ 20 0 1 −−3 1 1 2, − 1 242453 31 71 848, , , 8480 0, 1, −, −, −, −1 81 43 81 27 83 5481 44 1 22 44 χ 2π 1 23π 4 π π π4 π 2 34From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.� � � � � � �� � � � II. An N Dipole Array (θ = π 2 ) lim r�na rn ≈ r − na cos(φ) −N ≤ n ≤ N Eˆθ r, θ = π, φ = ηHˆφ r, θ = π, φ 2 2 � +N�kηdl � Iˆnejkna cos(φ) e−jkr = −4πjr � −N �� � Array factor = AF Example: Iˆn = I0e−jnχ0 − N ≤ n ≤ N +NAF = I0 ejn(ka cos(φ)−χ0) −N Let β ≡ ej(ka cos(φ)−χ0) +NAF � S = = βn = β−N + β−N+1 + . . . + β−2 + β−1 + 1 + β + β2 + . . . + βN−1 + βN I0 −N − βN+1 β−N − βN+1 β−N− 21 − βN+ 21 S(1 − β) = β−N ⇒ S =1 − β = β−1/2 − β1/2 multiply by β−1/2 β−1/2 sin (N + 1 )(ka cos(φ) − χ0)S = �2 � sin 1 (ka cos(φ) − χ0)2 Maxima: ka cos(φ) − χ0 = 2nπ, n = 0, 1, 2, . . . Principal maximum at n = 0 cos(φ) = χka 0 ⇒ Minima: (N + 1 )(ka cos(φ) − χ0) = nπ, n = 1, 2, 3, . . . 2 5From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.Demonstration, N = 2 (2 dipole array) 32a = λ, χ0 = 0 2� � � � I ∝ cos2(ka cos(φ)) = cos2 2�π 3 �λ cos(φ) = cos2 3π cos(φ)�λ 4�2 2 3�π π 1Minima: cos(φ) = �cos(φ) = φ = 70.5◦2�2�⇒ 3 ⇒ π π3�2��cos(φ) = 3�2��⇒ cos(φ) = 1 ⇒ φ = 0◦ 3πMaxima: cos(φ) = 0 φ = 90◦2 ⇒ 3�π 2cos(φ) = �π cos(φ) = φ = 48.2◦2 ⇒ 3 ⇒ фIntensity pattern 6 Image by MIT OpenCourseWare.7 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with


View Full Document

MIT 6 013 - LECTURE NOTES

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download LECTURE NOTES
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view LECTURE NOTES and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view LECTURE NOTES 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?