DOC PREVIEW
MIT 6 013 - Transmission Lines

This preview shows page 1-2-3 out of 9 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms6.013 - Electromagnetics and Applications Fall 2005 Lecture 10 - Transmission Lines Prof. Markus Zahn October 13, 2005 I. Transmission Line Equations A. Parallel Plate Transmission Line E ¯ must b e perpendicular to the electrodes and H ¯ must b e tangential, so E ¯= Ex(z, t)¯ix H ¯= Hy(z, t)¯iy ∂H ¯ ∂Ex ∂HyE = −µ = −µ� × ¯ ∂t ⇒ ∂z ∂t ¯ ∂E ¯ ∂Hy ∂Ex � × H = � ∂t ⇒ ∂z = −� ∂t 1 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.������� 2 v(z, t) = E ¯ d ¯ l = Ex(z, t)d· 1 z = constant i(z, t) = Kz(z, t)w = Hy(z, t)w ∂v ∂i µd= −L L = henries / meter Inductance per unit length∂z ∂t w ∂i ∂v �w = −C C = farads / meter Capacitance per unit length∂z ∂t d µd�w 1 LC = = µ� = 2wd cB. Transmission Line Structures 2 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.C. Distributed Circuit Representation with Losse s i(z, t) − i(z + Δz, t) = CΔz ∂v(z, t)+ GΔz v(z, t)∂t v(z, t) − v(z + Δz, t) = LΔz ∂i(z + Δz, t)+ i(z + Δz, t )RΔz ∂t i(z + Δz, t) − i(z, t) ∂i ∂v lim = = −C ∂t − Gv Δz 0 Δz ∂z →v(z + Δz, t) − v(z, t) ∂v ∂i lim = = −L∂t − iR Δz 0 Δz ∂z →R is the series res istance per unit length, measured in ohms/meter, and G is the shunt conductance per unit length, measured in siemens/meter. 3 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.����� ����� � ����� ����� � ��� � � � � � � � � � If the line is lossless (R = G = 0), we have the Telegrapher’s equations: ∂i ∂v = −C ∂z ∂t ∂v ∂i = −L ∂z ∂t Including loss, Poynting’s theorem for the circuit equivalent form is: ∂i ∂v ∂z = −C ∂t − Gv ∂v ∂i v · i = −L∂t − iR · ∂z ∂ �1 = −∂t 2 ∂(vi) 1 ∂i ∂v Cv2 + Li2 − Gv2 − i2RAdd: v + i = 2 ∂z ∂z ∂z D. Wave Equation (Lossless, R = 0, G = 0) ∂2i ∂2∂ ∂t ∂i ∂v v = −C ∂t ⇒ ∂z∂t = −C ∂t2∂z ∂2i 1 ∂2v ∂ ∂z ∂v ∂i ∂z = −L∂t ∂z∂t = −L ∂z2 2 2∂tc� 1 ∂2v ∂2v ∂2v ∂2v 1 ∂2v = −C = LC = − ⇒ ∂z2 Wave equation II. Sinusoidal Steady State A. Complex Amplitude Notation ∂z2 ∂t2 ∂t2L jωtv(z, t) = Re vˆ(z)ei(z, t) = Re ˆi(z)ejωt Substitute into the wave equation: ∂2v 1 ∂2v d2vˆ ω2 ω ∂z2 = c2 ∂t2 ⇒ dz2 = − c2 vˆ(z), let k = c d2vˆdz2 + k2 vˆ = 0 ⇒ vˆ(z) = Vˆ+e−jkz + Vˆ−e +jkz dvˆ 1 −��jk Vˆ+e−jkz + ��jk Vˆ−e= −Ljωˆi ⇒ ˆi(z) = − +jkz dz L��jω √LCk ω k = �= √LC C = Y0 is the Line Admittance= = ω ωc�⇒ ωL L L 1 L Z0 = = is the Line Impedance Y0 C Vˆ+e−jkzˆi(z) = Y0 V− ˆ−e +jkz 4� � � � vˆ(z) = Vˆ+e−jkz + Vˆ−e +jkz v(z, t) = Re Vˆ+ej(ωt−kz) + Vˆ−ej(ωt+kz) i(z, t) = Re Y0 Vˆ+ej(ωt−kz) − Vˆ−ej(ωt+kz) k = ω = ω√LC = ω√�µ c B. Short Circuited Line (v(z = 0, t) = 0, v(z = −l, t ) = V0 cos(ωt)) vˆ(z) = Vˆ+e−jkz + Vˆ−e +jkz ⇒ vˆ(z = 0) = 0 = � Vˆ+ + Vˆ− ⇒� Vˆ+ = −Vˆ− vˆ(z = −l) = V0 = Vˆ+e +jkl + Vˆ−e−jkl = Vˆ+ ejkl − e−jkl 5 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.� � � � � � ��� = 2j sin(kl)Vˆ+ ˆV0V+ = −Vˆ− =2j sin(kl) vˆ(z) = V0 � e−jkz +jkz � = V0(−2j) sin(kz) 2j sin(kl) − e 2j sin(kl) V0 sin(kz)= − sin(kl ) ˆi(z) = Y0 Vˆ+e−jkz − Vˆ−ejkz = Y0V0 e−jkz + e +jkz 2j sin(kl) 2�Y0V0 cos(kz)= 2�j sin(kl) jY0V0 cos(kz)= −sin(kl ) � � V0 sin(kz) V0 sin(kz) cos(ωt) v(z, t) = Re vˆ(z)ejωt= Re − sin(kl ) ejωt = − sin(kl ) � �� jY0V0 cos(kz) � Y0V0 cos(kz) sin(ωt)i(z, t) = Re ˆi(z)ejωt = Re −sin(kl ) ejωt = sin(kl ) We have resonance when sin(kl) = 0 kl = nπ = ωl ω = ωn ≡ nπc , n = 1, 2, 3, . . .⇒ c ⇒ l Complex impedance: Z(z) = vˆ(z) = −jZ0 tan(kz)ˆi(z) Z(z = −l) = +jZ0 tan(kl) In the following, take n = 1, 2, 3, . . .: kl = nπ Z(z = −l) = 0 short circuit π kl = (2n − 1)2 Z(z = −l) = ∞ open circuit π(n − 1)π < kl < (2n − 1)2 Z(z = −l) = +jX, X > 0 (positive reactance, inductive) 1(n − 2)π < kl < nπ Z(z = −l) = −jX, X > 0 (negative reactance, capacitive) kl � 1 Z(z) = −jZ0k⇒ � L = −j ω L��C C = −jLZ Z(z = −l) = j(Ll) inductive V0z |kz| � 1 v(z, t) = − l cos(ωt) ⇒ v(z = −l, t) = V0 cos(ωt) di = (Ll) (z = −l, t)dtV0Y0 V0 sin(ωt)i(z, t) = kl sin(ωt) i(z = −l, t) = (Ll)ω 6� � � � � � �C. Open Circuited Line (i(z = 0, t) = 0) v(z = −l, t) = V0 sin(ωt) ˆi(z) = Y0 Vˆ+e−jkz − Vˆ−e +jkz ⇒ ˆi(z = 0) = 0 = Y0 Vˆ+ − Vˆ− ⇒ Vˆ+ = Vˆ− vˆ(z = −l) = −jV0 = Vˆ+e +jkl + Vˆ−e−jkl = Vˆ+ ejkl + e−jkl = 2 Vˆ+ cos(kl) Vˆ+ = VˆjV0 − = −2 cos(kl) vˆ(z) = − jV0 � e−jkz + e +jkz � 2 cos(kl) jV0 · �2 cos(kz)= −2 cos(kl) jV0 cos(kz)= −cos(kl) ˆi(z) = − jY0V0 � e−jkz − e +jkz � 2 cos(kl) (−jY0V0)(−2j) sin(kz)= 2 cos(kl) Y0V0 sin(kz)= − cos(kl) v(z, t) = Re � vˆ(z)ejωt� = V0 cos(kz) sin(ωt)cos(kl) i(z, t) = Re � ˆi(z)ejωt � = −V0Y0 sin(kz) cos(ωt)cos(kl) πResonance: cos(kl) = 0 ⇒ (kl) = (2n − 1)2 , n = 1, 2, 3, . . . (2n − 1)π ωn = 2 …


View Full Document

MIT 6 013 - Transmission Lines

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download Transmission Lines
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Transmission Lines and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Transmission Lines 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?