DOC PREVIEW
MIT 6 013 - Acoustic Resonators

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fal2005. (Massachusetts Institute of Technology: MIT OpenCourseWare)http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms l .� � � � 6.013 - Electromagnetics and Applications Fall 2005 Lecture 23 - Acoustic Resonators Prof. Markus Zahn December 13, 2005 I. Governing Acoustic Equations ∂v¯ρ0 ∂t = −�p ∂p 2 ∂t = −ρ0cs� · v¯1 ∂2p2 2⇒ � p = c ∂t2 s II. Acoustic Resonator - Closed Box A. Boundary Conditions vx(x = 0) = vx(x = a) = 0 vy(y = 0) = vy(y = b) = 0 vz(z = 0) = vz(z = d) = 0 B. Solutions to Acoustic Equations 1 ∂2p2 2� p = c ∂t2 s p(x, y, z, t) = Re ˆj(ωt−k¯·r¯)p e= Re ˆj(ωt−kxx−ky y−kz z)p e∂2p ∂2p ∂2p 1 ∂2p 2�2 p = ∂x2 + ∂y2 + ∂z2 = cs ∂t2 1 Image by MIT OpenCourseWare.� � ˆp � kx 2 + ky 2 + kz 2� pω2 ⇒ −ˆ = − c2 s ω2 k2 + k2 + k2 = x y z 2cs ∂v¯ρ0 ∂t = −�ρ ∂vx ∂p ρ0 = −∂t ∂x ∂vy ∂p ρ0 ∂t = −∂y ∂vz ∂p ρ0 = −∂t ∂z vx ∝ sin(kxx), vx(x = 0) = 0 ⇒ p ∝ cos(kxx) vy ∝ sin(kyy), vy(y = 0) = 0 ⇒ p ∝ cos(kyy) vz ∝ sin(kzz), vz(z = 0) = 0 ⇒ p ∝ cos(kzz) p(x, y, z, t) = Re pˆcos(kxx) cos(kyy) cos(kzz)ejωtρ0jωvˆx = ˆ sin(kxx) cos(kyy) cos(kzz)pkx ˆpkx ⇒ vˆx = ρ0jω sin(kxx) cos(kyy) cos(kzz) ˆvˆy = pky cos(kxx) sin(kyy) cos(kzz)ρ0jω ˆvˆz = pkz cos(kxx) cos(kyy) sin(kzz)ρ0jω mπ vˆx(x = a) = 0 kxa = mπ kx = ⇒ ⇒ a nπ vˆy(y = b) = 0 kyb = nπ ky = ⇒ ⇒ b vˆz(z = d) = 0 kzd = pπ kz = pπ ⇒ ⇒ d �� m �2 � n �2 � p �2 �1/2 ω π + + = a b d cs cs �� m �2 � n �2 � p �2 �1/2 fmnp = + + 2 a b d cs ≈ 330 m/s, a = .203 m (8 in), b = .203 m (8 in), d = .305m (12 in) (The value for sp e ed of sound and the determined frequencies are for waves in air.) 2� � � � m n p fmnp(Hz) fmeasured(Hz) 0 0 1 541 550 0 1 0 813 0 0 2 1082 1 1 0 1150 1150 1 1 1 1270 1 1 2 1579 0 0 3 1623 0 2 0 1626 0 1 3 1815 1 2 2 2115 C. Comparison of Theory to Experiment Air - T = 0◦ C, p0 = 1 atm = 1.01 105 Nt/m2 (1 Nt/m2 = 1 Pascal) · ρ0 = 1.293 g/L = 1.293 kg/m3 cs = γp0 = 331 m/s ρ0 Helium -T = 0◦ C, p0 = 1 atm = 1.01 105 Pascals, γ = 1.67· ρ0 = 0.178 g/L = 0.178 kg/m3 cs = γp0 = 973 m/s ρ0 Helium/air mixture -f001 = cs = 950 Hz was measured 2d cs = 2d(950) = 2(.305)950 = 580 m/s cs,air < cs,air/He mixture < cs,He 331 < 580 < 973m/s III. Acoustic Resonator - z = 0 side open, other 5 s ides c losed A. Boundary Conditions vx(x = 0) = vx(x = a) = 0 vy(y = 0) = vy(y = b) = 0 vz(z = d) = 0, p(z = 0) = 0 B. Solutions p(x, y, z, t) = Re pˆcos(kxx) cos(kyy) sin(kzz)ejωtˆvˆx = pkx sin(kxx) cos(kyy) sin(kzz)ρ0jω ˆvˆy = pky cos(kxx) sin(kyy) sin(kzz)ρ0jω pkz vˆz = −ρˆ0jω cos(kxx) cos(kyy) cos(kzz)ejωt 3vˆx(x = 0) = 0 mπ vˆx(x = a) = 0 kxa = mπ kx = ⇒ ⇒ a vˆy(y = 0) = 0 nπ vˆy(y = b) = 0 kyb = nπ ky = ⇒ ⇒ b π (2p + 1)π vˆz(z = d) = 0 kzd = (2p + 1) kz = ⇒ 2 ⇒ 2d pˆ(z = 0) = 0 ω2 �� m �2 � n �2 �2p + 1 �2 � = π2 + + c2 a b 2ds cs �� m �2 � n �2 �2p + 1 �2 �1/2 fmnp = + +2 a b 2d (2p + 1)cs �� f000 = � , cs = 330m/s (air), d = .305 m f000 = 270.5 Hz 4d p=0 ⇒ �� �2 � �2 �1/2 cs 1 1 f100 = + = 856.6 Hz 2 a 2d


View Full Document

MIT 6 013 - Acoustic Resonators

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download Acoustic Resonators
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Acoustic Resonators and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Acoustic Resonators 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?