DOC PREVIEW
MIT 6 013 - Lecture Notes

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms6.013 - Electromagnetics and Applications Fall 2005 Lecture 21 - Receiving Antennas Prof. Markus Zahn December 6, 2005 I. Review of Transmitting Antennas (Short Dipoles ) =zdldzeff∫(0)(0)(z)1dl 2IvIvIvdl2+� A. Far fields (r � λ) Eˆ0 Id leffk2η Eˆθ = ηHˆφ = jkr sin(θ)e−jkr, Eˆ0 = − ˆ4π , η = µ� B. Intensity �Sr� �Sr� = 12 Re � E ¯ˆ× H¯ˆ∗ � = 21 η |Eˆ¯ |2 = 21 η |kEˆ20r|2 sin2(θ)2 ˆ42η�2 =1 |Idleff|2k�sin2(θ)ηk�222�16π2�rˆ2k2η = |Idleff|sin2(θ)32π2r2 C. Total time average power �P � � π � 2π �P � = dθ dφ �Sr� r 2 sin(θ) 0 0 Id leff= | ˆ|2ηk2 12π =1 ˆ2R R =2πη � dleff �2 radiation resistance2|I| ⇒ 3 λ D. Gain G(θ, φ) = �Sr� �P � /(4πr2) = �|Idlˆ�eff�� |2��η�sin2(θ) · 12�π(�πr��2)k24�2�r2�Id l�eff�� �8�32��π2��| ˆ| η��k2 3 = sin2(θ)2 1 Image by MIT OpenCourseWare.� � � � � � � � � � � � � EoS1V1d1I1abce+yx___For d1 << λθϕZII. Receiving Antennas In absence of receiving antenna: E¯ inc = E¯ 0, H¯ inc = H¯ 0. With d1 � λ, over size scale of antenna, E¯ 0 and H¯ 0 are approximately spatially uniform. In presence of receiving antenna, electric and magnetic fields are perturbed so that tangential E ¯ and normal H ¯ are zero along the perfectly conducting length of the antenna. E ¯= E¯ 0 + E¯ 1 (1) H ¯= H¯ 0 + H¯ 1 (2) Surface S1 above intimately hugs the antenna so that E ¯ × da¯ = da E¯ 0 + E¯ 1 × n¯ = 0 (tangential E ¯ = 0) (3) S1 S1 +d1/2 da n¯ × (H¯ 0 + H¯ 1) = da K ¯= dz I¯ 1(z) = I1deff ¯iz (4) S1 S1 −d1/2 Another useful relationship: da (E¯ 0 × H¯ 0) n¯ = ( E¯ 0 × H¯ 0) da n¯ = 0 (5)· · S1 S1 Integral of normal over closed surface is zero: dV �f = n, Take f = 1, �f = 0 = da ¯ (6) da f ¯ n = 0 V S S Scalar Triple Product Identity: (¯a × ¯ b) c¯ = ¯a (¯ b × c¯) (7)· · (Interchange of cross and dot) Complex power supplied by receiving antenna ¯ P = da Sˆn¯ (8)· S1 Sˆ¯= 12(E ¯ˆ× Hˆ¯ ∗) = 12 � (Eˆ¯ 0 + Eˆ¯ 1) × (Hˆ¯ 0 ∗ + Hˆ¯ 1 ∗) � ¯ ¯ ¯ ¯ ¯ ¯ =1 � Eˆ0 × (Hˆ0 ∗ + Hˆ∗) + Eˆ1 × (Hˆ0 ∗ + Hˆ∗) � (9) �2 �1 �� 1 ��� �� P = da Sˆ¯ n¯ =1 da E¯ˆ0 × (H¯ˆ0 ∗ + H¯ˆ1 ∗) n¯ + da E¯ˆ1 × (H¯ˆ0 ∗ + H¯ˆ1 ∗) n¯ (10) · 2 · · S1 S1 S1 2 Image by MIT OpenCourseWare.� � � � �� � � � � �� ��� � ¯ ¯ da Eˆ0 × (H¯ˆ0 ∗ + Hˆ1 ∗) n¯ = da E¯ˆ0 · (H¯ˆ0 ∗ + H¯ˆ1 ∗) × n¯· S1 S1 = E¯ˆ0 · da (Hˆ¯ 0 ∗ + Hˆ¯ 1 ∗) × n¯S1 = −E¯ˆ0 · Iˆ1deff ¯iz (from (4)) (11)�� ��� � �� � da Eˆ¯ 1 × (Hˆ¯ 0 ∗ + Hˆ¯ 1 ∗) n¯ = da E¯ˆ1 × H¯ˆ0 ∗ n¯ + da E¯ˆ1 × H¯ˆ1 ∗ n¯ (12)· · · S1 S1 S1 |Iˆ1|2(R+jX) where R is the radiation resistance and X is the antenna reactance �� ��� � da Eˆ¯ 1 × H¯ˆ0 ∗ · n¯ = − da H¯ˆ0 ∗ × Eˆ¯ 1 · n¯S1 S1 ¯ ¯ ¯ = − da Hˆ0 ∗ × (Eˆ0 + Eˆ1) n¯· �S1 � � �� � = − da Hˆ¯ 0 ∗ (Eˆ¯ 0 + E¯ˆ1) × n¯ = −H¯ 0 ∗ da Eˆ¯ 0 + E¯ˆ1 × n¯· · S1 S1 = 0 (from (3)) (13) P = 12 � −Eˆ¯ 0 · Iˆ1deff ¯iz + |Iˆ¯ 1|2(R + jX) � = 12Vˆ1Iˆ1 ∗ Thevenin Equivalent Circuit VˆT H = Vˆoc = −E¯ˆ0 · d¯ eff (d¯ eff = deff ¯iz) 3 Image by MIT OpenCourseWare.III. Transmitting and Receiving Antennas A. Circuit Description I1I2V1V2Two port network^^^^ˆV1 = ˆI1Z11 + ˆI2Z12 ˆV2 = ˆI1Z21 + ˆI2Z22 Z12 = ˆV1 ˆI2 ��� ˆI1=0 Z21 = ˆV2 ˆI1 ��� ˆI2=0 Reciprocity Theorem: Z12 = Z21 B. Antenna Thevenin Equivalent Circuits Z11 = R1 + jX1Z22 = R2 + jX2I1I2Vth1Vth2V1V2Z22TransmitterReceiver (Balanced load Z*22 to cancel reactance X2) *ˆVth1 = ˆI2Z12 = − � ˆ¯ E1 · dl = − ˆ¯ E1 · dleff ˆVth2 = ˆI1Z21 = − ˆ¯ E2 · dleff 4 Image by MIT OpenCourseWare.Image by MIT OpenCourseWare.1 |Vˆth2/2|2 =1 |Vˆth2|2 =1 |Eˆ2dleff � sin(�θ2 )|2 �P2� =2 R2 8 R2 8 2πη dleff 3 λ 1 �Eˆ�2�2 1 �ˆ��2 sin2(θ) 3λ2 �P2� = Arec(θ, φ) �Sr� = Arec(θ, φ) · 2 | η�|=8 |E2|2πη�· 3 λ2 λ2 Arec(θ, φ) = sin2(θ) = Grec(θ, φ)2 4π 4π C. Representative Parameters 1. Minimum received power ≈ 10−20 watts For total transmitted power of 1 watt, how far away can the receive r be at f = 1 GHz? �Ptrans� λ2 �Prec� =4πr2 Gtrans Grec 4π� �� �� �� � �Sr � Arec(θ,φ) fλ = c λ = c =3 × 108 = .3 m ⇒ f 109 3 Gtrans = Grec = sin2(θ) (for short dipoles) (identical transmitting and receiving antennas) 2 π 3 Take θ = Gtrans = Grec = 2 ⇒ 2 � �2 2 Ptrans λ r = GtransGrecPrec 4π � �� �21 9 .3 = 10−20 4 4π = 1.28 × 1017 m2 r = 3.58 × 108 m = 3.58 × 105 km ≈ 200, 000 miles 2. For data transmission, receivers need Eb > 4 × 10−20 Joules/bit Power received = M Eb where M is the data rate, bits/s 10−9 watts received power allows M = 10E−b 9 = 4×1010−−920 = .25 × 1011 bits/s 1 CD = 700 × 106 bytes = 5600 × 106 bits (1 byte = 8 bits) M = .25 × 1011 bits/sec ≈ 4.5 CD/sec 3. Distance is not a barrier to wireless communications r = 1 lightyear = 3 × 108 m/s 3 × 107 s/yr = 9 × 1015 m/yr ·Ptrans =? c f = 3GHz λ = = .1 m ⇒ f M = 1 bit/s, Eb = 4 × 10−20 Joules/bit Prec = MEb = 4 × 10−20 Watts Gtrans = Grec = 107 5� �24πr Prec λPtrans = GtransGrec� �2 4 × 10−20 4π(9×1015) .1 = 1014 = 512 Watts For M = 2.4 kb/s ⇒ Ptrans ≈ 1.2 MW (with a 1 year delay each way) 4. Optical Communications: E = hf, h = 6.625 × 10−34 Joule-sec (Planck’s Constant) a. Radio Photons …


View Full Document

MIT 6 013 - Lecture Notes

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?