DOC PREVIEW
MIT 6 013 - Transient Waves on Transmission Lines

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms� � � � � � � � � � 6.013 - Electromagnetics and Applications Fall 2005 Lecture 12+13 - Transient Waves on Transmission Lines Prof. Markus Zahn October 25 and 27, 2005 I. Wave equation (Lossless) ∂v ∂i ∂2v 2 ∂2v = −L = c ∂z ∂t ∂t2 ∂z2 ∂i ∂v ⇒ 1 1 ∂z = −C∂t c = √LC = √�µ Solution: v(z, t) = V+ t − zc + V− t + zc z ∂α ∂α 1Proof: Let α = t − c ⇒ ∂t = 1, = −∂z c zSuperposition: v+(z, t) = V+ t − c ∂v+ dv+ ∂α dv+ = = ∂t dα ∂t dα ∂2v+ d2v+ ∂α d2v+ = = ∂t2 dα2 ∂t dα2 ∂v+ dv+ ∂α 1 dv+ = = −∂z dα ∂z c dα ∂2v+ 1 d2v+ ∂α 1 d2v+ ∂z2 = − c dα2 ∂z = c2 dα2 ∂2v+ d2v+2 ∂2v 2 1 d2v+ d2v+ = = c = c = ∂t2 dα2 ∂z2 c2 dα2 dα2 ∂β ∂β 1Negative z directed waves: Let β = t + zc ∂t = 1, ∂z = c⇒ ∂v dv ∂β dv− = − = − ∂t dβ ∂t dβ ∂2v d2v ∂β d2v− = − = − ∂t2 dβ2 ∂t dβ2 ∂v dv ∂β 1 dv− = − = − ∂z dβ ∂z c dβ ∂2v 1 d2v ∂β 1 d2v− = − = − ∂z2 c dβ2 ∂z c2 dβ2 ∂2v d2v2 ∂2v 1 d2v d2v− = − = c − = c 2 − = − ∂t2 dβ2 ∂z2 c2 dβ2 dβ2 II. Solution for current i(z, t) ∂v ∂i = −L ∂z ∂t ∂2i 2 ∂2i = c⇒ ∂t2 ∂z2 ∂i ∂v = −C ∂z ∂t 1� � � � � � � � � � � � � � � � � � � � � � � � � � Solution: i(z, t) = I+ t − zc + I t + zc� � � �− v(z, t) = V+ t − zc + V− t + zc +z solution: α = t − z , ∂α = 1, ∂α 1 c ∂t ∂z = −c ∂v+ ∂i+ dv+ ∂α 1 dv+ ∂z = −L ∂t ⇒ dα ∂z = − c dα di+ ∂α = −L dα ∂t di+ = −L dα dv+ di+ L di+ L di+ di+ dα = Lc dα = √LC dα = C dα = Z0 dα z z v+ = i+Z0 ⇒ I+ t − = Y0V+ t −� c c C 1 Y0 = = L Z0 −z solution: β = t + z , ∂β = 1, ∂β = 1 c ∂t ∂z c ∂v ∂i dv ∂β 1 dv− = −L − − = − ∂z ∂t ⇒ dβ ∂z c dβ di ∂β = −L dβ − ∂t = −Ldi− dβ dv di L di L di didβ − = −Lc dβ − = −√LC dβ − = − C dβ − = −Z0 dβ − z z v− = −i−Z0 ⇒ I+ t + c = −Y0V− t + c z z v(z, t) = V+ t − + V− t + � �c � �c �� z z i(z, t) = Y0 V+ t − c − V− t + c III. Transmission Line Transient Waves A. Transients on Infinitely Long Transmission Lines 1. Initial Conditions z z v(z, t = 0) = V+ − c + V− c = 0 � � � � �� z z i(z, t = 0) = Y0 V+ − c − V− c = 0 z z V+ = 0, V = 0 − c − c � � z z z > 0, t > 0 ⇒ t + c> 0 ⇒ V− � t + c � = 0 z z z t − c> 0 if t > c to allow V+ t − c = 0 �2� � � � � z � � z � v(z, t)With V− t + c = 0 ⇒ v(z, t) = V+ t − c ⇒ i(z, t)= Z0 z i(z, t) = Y0V+ t − c 2. Traveling Wave Solution v(z = 0, t) = V (t) = V+(t) v(z = 0, t) = Z0 V (t) = V+(t)Z0 + RS V (t)i(z = 0, t) = Y0V+(t) = RS + Z0 Z0 z v(z, t) = Z0 + RS V t − c 1 � z � i(z, t) = RS + Z0 V t − c 3 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.� � � � � � � � � � B. Reflections from Resistive Terminations 1. Reflection Coefficient l lAt z = l : v(l, t) = V+ t − c + V− t + c = i(l, t)RL � � � � �� l l = Y0RL V+ t − c − V− t + c ΓL = V− � t + cll � = RL − Z0 V+ t − c RL + Z0 Special cases: a. RL = Z0 ⇒ ΓL = 0 (matched line) b. RL = 0 ⇒ ΓL = −1 (short circuited line) If RL < Z0, ΓL < 0 c. RL = ∞ ⇒ ΓL = +1 (open circuited line) If RL > Z0, ΓL > 0 2. Step Voltage At z = 0: v(z = 0, t) + i(0, t)RS = V0 V+(z = 0, t) + V−(z = 0, t) + Y0RS [V+(z = 0, t) − V−(z = 0, t)] = V0 V+(z = 0, t) = ΓS V (z = 0, t) + Z0V0 , ΓS = RS − Z0 −Z0 + RS RS + Z0 a. Matched Line: � RL = � Z0, ΓL = 0; RS = Z0, ΓS = 0 ΓL = 0 ⇒ V− t + zc = 0, V+ (z = 0, t) = V2 0 , in steady state after time T = cl b. Short circuited line: RL = 0, ΓL = −1, RS = Z0, ΓS = 0 ΓL = −1 V+ = −V−. When V+ t − zc and V t + zc ove rlap in space, ⇒ 2l − v(z, t) = 0. For t ≥ 2T = , v(z, t) = 0, i(z, t ) = V0 . c Z0 c. Open circuited line: RL = ∞, ΓL = +1, RS = Z0, ΓS = 0 ΓL = +1 ⇒ V+ = +V−. For t ≥ 2T = 2cl , v(z, t) = V0, i(z, t) = 0 4 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.5 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.From Electromagnetic Field Theory: A Problem Solving …


View Full Document

MIT 6 013 - Transient Waves on Transmission Lines

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download Transient Waves on Transmission Lines
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Transient Waves on Transmission Lines and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Transient Waves on Transmission Lines 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?