Unformatted text preview:

L4-1REVIEW OF UPW BASICSEx=ωˆEocos(t−kz)EHy=ωˆocos(t−kz)ηoExample : xˆ-polarized UPW traveling in +z direction1c3==x108m/sμεooE(z) = xˆE−jkzoeEH(z) = yˆoe−jkzηoE×H: zˆ direction of propagationzyHz(,0)xEz(,0)2πλ=kwavelengthdirection of propagationcλ =f2πωμω=(rads/s) 2πf k(rads/m) == η=oλ coε0ˆL4-2HOW DO WAVES CONVEY POWER, ENERGY?But E ⊥ HRecall:This is Poynting’s TheoremWhat does it mean?E [V/m] i J [A/m23] = Pd [W/m ]Manipulate Ampere’s law to get E • J()()∂BD∂HE⋅∇× −E⋅∇×H=−H⋅()−E⋅(J+⋅ )∂tt∂Vector Identity()∂BD∂3∇⋅EH× = H−⋅ E−⋅J E−⋅ (W/m)∂tt∂For symmetry, compute∂BH(⋅∇×E=− )∂t∂DE(⋅∇×H=J+ )∂tPOYNTING THEOREML4-3()∂∂BDPoynting’s Theorem:∇ ⋅×EH = H−⋅ E−⋅ E−⋅J∂∂ttB =μH D =εE()d1⎛⎞22d1⎛⎞∇⋅ EH× = −⎜⎟μH −⎜εE⎟ E3−()⋅J (W/m)dt⎝⎠2 dt⎝2⎠Stored magneticStored electricPower densityenergy density, energy density, dissipated/m3, WmWeWdPoynting vector, S [W/m2]Energy is conserved!⎛volts amps watts⎜⋅=⎝mm m2Poynting VectorSE=×H (W/m2)EHSd1⎛⎞ 2d|H| dBNote:⎜⎟μ |H| =μ |H| =H idt⎝⎠2 dt dt⎞⎟⎠L4-4INTEGRAL POYNTING THEOREMGauss’s Theorem (not Gauss’s Law)Use:∫∫A ⋅=nˆ da ∇⋅A dvSV()∫∫E×⋅H nˆ da = ∇⋅×SV(E H) dvndaˆdvdvdvdvdvTherefore:The Poynting vector SE= ×Hgives both the magnitudeof the power density (intensity) and the direction of its flow.()()⎡d1⎛⎞d1⎛⎞=−∫22 ⎢⎜⎟μH −⎜εE⎟ −E⋅J dv V⎣dt⎝⎠2 dt⎝2⎠d1⎛⎞221∫∫E×⋅H nˆ da = −⎜⎟εE +μH dv − SV⎝⎠∫E⋅J dvdt 2 2VPower emerging = released stored energy - dissipation [W]⎤⎥⎦UNIFORM PLANE WAVE EXAMPLEL4-5Ex=ωEocos()t−kz⎛⎞EHy=ωo⎜⎟cos()t−kz⎝⎠ηo1WEeo=ε22ocos()ωt−kz21μWE=ωo22mo()−η2costkz2oThe time average is “intensity” [W/m2]〈S(r,θφ, 〉⎛⎞E2S(t) =×E H =zˆ⎜⎟ocos22()ωt −kz (W/m )⎜⎟η⎝⎠o1E2⇒〈 Sz〉=ˆo=2 ηozE2Sz=ωˆocos2()t−kzI ()2θφ,,r [w/m]η0Sz( at t= 0)0L4-6COMPLEX NOTATION – POYNTING VECTORDefining a meaningful and relating it to is not obvious.Let’s work backwards to find the time average and thenSSThus, we can defineand〈S〉1〈〉SR= e(E×H∗2)SE= ×H∗SRecall:E =+E =+jtω= ω+ ωrijE H HrjHi e cos t jsin tS(t) =×E H =Re⎡E⋅ejtω⎤⎡×Re H⋅ejtω⎤⎣ ⎦⎣ ⎦=ω[E cos( t) −riE sin(ωt)]×[H ω−ωrcos( t) Hisin( t)]()()()1⇒〈 S(t)〉=⎡⎤E × + ×2⎣⎦rrH EiHi11 = R E ×∗2eH [R=+{(EjE)×(H−er i rjHi)}]2S(by definitionUPW REFLECTED BY PERFECT CONDUCTORL4-7E=ωxˆˆE+−cos(t−kz)+xEcos(tω+kz) = 0 at z = 0 (perfect conductor) ⇒=EE−+−⇒= E xˆ2E+sinωt ⋅sinkz α +β α−β (recall: cosα−cosβ=−2sin isin )22We[J/m3] = 2 εE2 sin2ωt sin2kzPerfectE = 0 every half cycle (ωt = 0, π, etc.)Conductor(Where does the energy go?)ωt = πω/2t = -π/2ωt = 0zz = 0xEStanding waves, oscillate without movingForward plus reflected wave(Solving for unknown reflection)Never any WehereL4-8STANDING WAVE EXAMPLE - CONTINUEDEEH =ωyˆ [+−cos( t −kz) −ycos(ωt +kz)]ηηooE2=⋅zsˆ+in2kz⋅sin2ωtηo2EH =ωyˆ+cos t ⋅coskzηo(It’s in the H field!)E2S =×E H =zˆ 4+cosωtsinωt ⋅coskzsinkzηoE =ωxˆ [E+−cos( t −kz) +E cos(ωt +kz)]EE−+=− ⇒1⇒〈S0〉= = Re()E×H∗2Note= 0 when ωt = π/2, 3π/2, etc.)ωt = 0z = 0ωt = πSyHzωt = π/2W[32⎛⎞2E21moJ/m] = μ+222⎜⎟cos ωt cos kz = 2εE c⎝⎠+osωt cos kz2 ηo2MIT OpenCourseWare http://ocw.mit.edu 6.013 Electromagnetics and Applications Spring 2009 For information about citing these materials or our Terms of Use, visit:


View Full Document

MIT 6 013 - REVIEW OF UPW BASICS

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download REVIEW OF UPW BASICS
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view REVIEW OF UPW BASICS and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view REVIEW OF UPW BASICS 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?