DOC PREVIEW
MIT 6 013 - Basic Equations of Electrodynamics

This preview shows page 1 out of 3 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Quiz 2 - Basic Equations of Electrodynamics Mathematical Identities Electromagnetic Variables Maxwell's Equations, Force Constants v(t) = Re{V 4/13/09 ejωt}where V = |V|ejφ E = electric field (V/m) ∇×=EB−∂/∂t εo = 8.85×10-12 F/m ∇ = xˆ∂/∂x + yˆ∂/∂y + zˆ∂/∂z H = magnetic field (A/m) v∫∫dEd⋅=sˆˆ− B⋅nda μo = 4π×10-7 H/m CSdtAB⋅=AxxB +AyBy+AzBz D = electric displacement (C/m2) ∇×=HJ+∂D/∂t c =1/εooμ ≅ 3×108m/s ∇2φ = (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2)φ B = magnetic flux density (T) v∫∫dH ⋅=ds J ⋅ndaˆˆ+∫D ⋅nda h = 6.624×10-34 Js CSdtSsin2θ + cos2θ = 1 Tesla (T) = Weber/m2 = 104 gauss ∇⋅D =ρ→v∫∫D ⋅ndaˆ= ρdv e = 1.60×10-19 [C] sv3∇⋅(A∇× )=0 ρ = charge density (C/m ) ∇⋅=B 0 →v∫B⋅ndaˆ=0 kSB = 1.38×10-23 J/K ∇×(A∇× )=∇(∇⋅A)−∇2A J = current density (A/m2) ∇ ·⎯J = -∂ρ/∂t ηo ≅ 377ohms =μoo/ ε ∫∫(G∇⋅ )dv=vG⋅nˆda σ = conductivity (Siemens/m) ⎯f = q(⎯E +⎯v × μo⎯H) [N] me = 9.1066×10-31 kg VS∫∫(∇×G) ⋅ndaˆˆ= G ⋅dsSCv Js = surface current density (A/m) Waves Media ejωt = cos ωt + j sin ωt ρs = surface charge density (C/m2) (t∇22−με∂ ∂2)E=0 DE= ε=εoE+P cosα + cosβ = 2 cos[(α+β)/2] cos[(α-β)/2] (∇2 + k2)⎯E = 0, EE=jk roe− ⋅ ∇ ⋅=D ρf ∫+∞H(ω=) h(t)e−ωjtdt Boundary Conditions −∞ωπ2kk=ω με= = =222xy+k+kz c λ∇⋅εofE =ρ +ρp ex = 1 + x + x2/2! + x3/3! + … n(ˆ× E12−=E) 0 vp = ω/k, vg = ∂ω/∂k DE= ε=, JσE sinα = (ejα – e-jα)/2j n(ˆ× H12−=H) Js Ex(z,t) = E+(z-ct) + E-(z+ct) [or (ωt-kz) or (t-z/c)] BH=μ =μo(H+M) cosα = (ejα + e-jα)/2 n(ˆ⋅ B12−=B) 0 Hy(z,t) = (1/ηo)[E+(z-ct) - E ε= (122-(z+ct)] εop−ω/ω ) n(ˆ⋅ D12−=D) ρs Ex(z,t) = Re{Ejx(z)eωt} ω Ne2p=ε/mo ⎯E =⎯H = 0 if σ = ∞ 1<×*EH>=Re{E×H} ε2eff = ε(1 – jσ/ωε) d1v221∫∫(E × H) ⋅=ndaˆ− ( εE +μH )dv −∫E ⋅Jdv Δ =σ2/( η) svdt 2 2v δ = 2/ωμσPlanar Interfaces Quasistatics Circuit Elements Electromagnetic Forces θ=irθ 4/13/09 E = −∇Φ QC = Vfq=+(Ev×μoH) [N] sin θtknεμ==iiii sin θitkεμttnt∇Φ2ρ=− εoΛL = IFI= ×μoH [N/m] θ=1ctsin−(n / ni) Φ=(r)∫{ρ(r ')/4πεr'−r }dv' v'dv(t)i(t) = C dtEeo=−v×μ H (inside conductor) ⎛⎞ta1nθ=tBn−⎜⎟ ⎝⎠niμ=oHA∇× di(t)v(t) = L dtdw dzvi =+f dt dt1T+Γ= ∇=2AJ−μo Λ =⋅∫Bdaˆ (per turn)⋅N Adwf|ex=−Q=const. dxTE TEΓ=TM TMTE(Zn−1) (Zn+1) TMA(r) =μ∫{oJ(r ')/ 4πr '−r }dv' v'1w(2et)= Cv(t) 2dwf|mx=−Λ=const. dxηθZTEticosn= TEM Transients ηθitcos1w(2mt)= Li(t) 2Tr= × f Pe=μH2/2, εE2/2 [N/m2] ηθZTMttcosn= ηθiicosdv(z, t) di(z, t)=−L dz dtLτ =τRC, = RdwTθΛ=−Q or =const dθkk=+'jk" dv22(z,t) dv(z,t)= LC TEM Sinusoidal Steady State RLC Resonators dz22dt2P2ds≅σJ /2 δ [W/m ] zzv(z, t) = f+−(t −+) f (t +) ccV(z) =+V e−+jkzV ejkz+ − Zseries = R + jωL +1/jωC Waveguides ⎛⎞zzi(z,t) =−Yo⎜⎟f+−(t ) −f (t +) ⎝⎠ccI(z) =−Yjkz jkzo(V e−++−V e ) Yparallel = G + jωC + 1/jωL EyˆjkzzTE=⋅Eosinkxxe− c1==/LC1/με k2= π/λ=ω/c=ω με ωoTw ωω=oo1/ LC , Q = = PdissΔωEyˆzTE=⋅Eosinkxxe−α ZLo= /C Z(z) = V(z) / I(z) =⋅ZonZ (z) EM Resonators kk222 2xz+=ko=ωμε RZ−LoR1Ln−Γ=L= RZLo+ RLn+1Γ(z) ==(V / V )e2jkz−+(Znn(z) −1) /(Z (z) +1) At ,ωoe 〈〉w =〈wm〉 1 λ=22gz1 λ=1/λo−1/λx v2Th= f+(t) , RTh= Zo Znn(z) =[1+Γ(z)]/[1−Γ(z)] =R +jXn ∫2〈〉we=(εE /4)dv Vωωdv,pg== v kdkZ(z) =ZoL⋅−(Z jZotankz)/(Zo−jZLtankz) ∫2〈〉wm=(μH /4)dv V 1+ΓVSWR ==Vmax/ Vmin=R n max1−Γcf222mnp= (m/a) +(n/b) +(p/d) 2 ωQ,owTω ω 111=== =+ P2dissαΔω QLQEQIMIT OpenCourseWare http://ocw.mit.edu 6.013 Electromagnetics and Applications Spring 2009 For information about citing these materials or our Terms of Use, visit:


View Full Document

MIT 6 013 - Basic Equations of Electrodynamics

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download Basic Equations of Electrodynamics
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Basic Equations of Electrodynamics and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Basic Equations of Electrodynamics 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?