DOC PREVIEW
MIT 6 013 - Estimating Static Fields

This preview shows page 1-2-3 out of 9 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Estimating Static Fields Examples of point and line Images of lightning rod, power line corona, and 0.1 micron field integrated circuits removed due to copyright restrictions. emission Φ=bEdz − ab ∫a i ∝ r1 (spherical case), or ∝ ln r (cylindrical case) E ||∝2 L EEr− ρο r ρο r ||Er∝−1 R R Surface area = 2πrLSurface = 4πr2 ∞ Spherical geometry Cylindrical geometry L7-1L7-2 2 2 2 2 4ˆ 4 ( ) ( ) = 4 4 • πε = = π ε ⇒ = = πε πε ⇑ ∫ a a r rA V a VaQQ Dnda r Er Er r r r 2 11( ) 4 4 4 4 ⎛ ⎞ = = = − − ≅ ⇒ = πε ⎜ ⎟πε πε πε⎝ ⎠∫ ∫b b a r aa a Q dr Q QV Erdr Q V a ba ar (b >> a) a b Simple Static Example Spherical breakdown Q V Lightning rod: a ≅ 1 mm, V 104 volts ⇒ 107 V/m breakdown/corona Power line: a ≅ 1 cm, V 105 volts ⇒ 107 V/m breakdown/corona Integrated Circuit: a ≅ 0.1μm, V = 1 volt ⇒ 107 V/m breakdown/corona > > ()= ⇑ a r VEa a () 4 = πε QVr r ⇓L7-3 SOLVING FOR STATIC FIELDS Approaches when given Φ, Ψ on boundaries: q q p V pq Use dv, E4r ρ Φ= = −∇Φ πε∫ q qp pq 2V pq ˆE r dv 4r ρ = πε∫ q p q p q2V p q J(r -r ) H dv 4| r -r | × = π∫ Approaches when given ρ, J: z y x dVq rpq Vq rq rp p Superposition integrals Biot-Savart Law Use Laplace’s Equation. Derivation: 2BElectric : ×E = - = 0 (statics) E = - Φ. ρ =0 E = 0 Φ =0 t ∂∇ ⇒ ∇ ⇒ ∇ ⇒ ∇ ∂ i . 2DMagnetic : ×H = = 0 (statics; J = 0) H = -H = 0 = 0 t ∂∇ ⇒ ∇Ψ ∇ ⇒ ∇ Ψ ∂ iSEPARATION OF VARIABLES Static charge-free regions obey Laplace’s equation: Electric potential ∇2Φ(r) = 0 ; Magnetic potential ∇2Ψ(r) = 0 Assume Φ(x,y) = X(x)Y(y) ⇒ 2 2 2 2 2 ∂Φ ∂Φ dX dY∇Φ= + =Y(y) + X(x) = 0 ∂x2 ∂y2 dx2 dy2 2 21dX =−1dY =−k2 "separation constant" Xdx 2 Y dy 2 Solutions: 2dX 2=−k X⇒ X(x) =Acos(kx) +Bsin(kx) dx2 For k2 > 0;2 (swap x,ydY 2 = +Dsinh(ky)=kY⇒ Y(y)Ccosh(ky)dy2 If k2 < 0) or: Y(y) = C'eky + D'e-ky (equivalent to above) L7-4SEPARATION OF VARIABLES Solution to Laplace’s equation when k2 = 0: Φ(x,y) = X(x)Y(y) ⇒ Φ(x,y) = (Ax + B)(Cy + D) Example, Cartesian coordinates: {Φ = (Ax+B)(Cy+D) = 0 at x=0 for all y} ⇒ B = 0 Given Φ(x,y) Φo Φ=0 Φ(x,y) 0 y xLx 2 2 0 Xdx Y dy = − = Ly 2 21d X 1 d Y 2 2 2 dx 2 dX 0= X(x) = Ax + B dY 0 Y(y) = Cy + D ⇒ dy ⇒ = {Φ = (Ax+B)(Cy+D) = 0 at y=0 for all x} ⇒ D = 0 {Φ = Φo at x=Lx, y=Ly} ⇒ AC = Φo/LxLy Φ = xyΦo/LxLy Φ is matched at all 4 boundaries L7-5CIRCULAR COORDINATES Separation of Laplace’s equation: Only in cartesian, cylindrical, spherical, and elliptical coordinates Circular coordinates: 2 r2 (r, ) 1 ∂ (r ∂Φ ) + 12 (∂Φ ) = 0 θ∇Φ θ = 2rr∂∂r r ∂θ rd dR 1d2Θ 2 x R(r) ( ) ⇒ (r ) =− ( 2) = mΦ= Θθ Rdr dr Θ dθ Solutions (pick the one matching boundary condition): (r, ) (A + θ + Dln r) for m2 = 0Φθ= B )(C (r, ) (Asin m θ+ θ m + Dr −m) for m2Φθ= Bcosm )(Cr > 0 Φθ= (r, ) [Asinh m θ + Dsin( 2θ+ Bcosh m )[Ccos(mln r) mln r)] for m < 0 Example – conducting cylinder (m = 0): V volts rΦ(r,θ) = C+D ln r = V[2-(lnr/lnR)](r ≥ R); Φ(r,θ) = V (r < R) 0 RE(r) =−∇Φ=− (r ˆ ∂ +θ ˆ1 ∂ )Φ= V [V/m] (r > R) ∂r r ∂θ rlnR σ = ∞ L7-6L7-7 ⎡ ⎤+ ε−ε ⎢ ⎥ρ = −∇ • = −∇ • ε − ε = − ε − ε = − ⎢ ⎥σ σ ⎢ ⎥⎣ ⎦ o 3o o p o o o o xJ(1 ) ( )J d LP ( )E ( ) [C/m ] dx L INHOMOGENEOUS MATERIALS Governing Equations: o f pJ E D E E P D P=σ =ε =ε + ∇• =ρ ∇• =−ρ Non-uniform Conductivity σ(x) (e.g., doping gradients in pn junctions): Assume o [S/m] x1 L σσ= + x 0 I [A] J [A/m2] L o o xJ(1 )J LˆE x [V/m] + = = σ σ ⎡ ⎤+ ε⎢ ⎥ρ=∇• =∇•ε =ε = ⎢ ⎥σ σ ⎢ ⎥⎣ ⎦ o 3o f o o xJ(1 ) Jd LD E [C/m ] dx L Note: Non-uniform conductors have free charge density ρf and polarization charge density ρp throughout.L7-8 INHOMOGENEOUS PERMITTIVITY Governing Equations: o f pJ E D E E P D P=σ =ε =ε + ∇• =ρ ∇• =−ρ Example, Non-uniform Permittivity ε(x): Assume: o x(1 ) [F/m] Lε=ε + Non-uniform dielectrics have polarization charge density ρp throughout. x 0 L +V 0 volts o o o o D D ED E f(x) E x x(1 ) (1 )L L =ε ≠ ⇒ = = = ε ε + + o x o o L L 0 0 E VV E dx dx E Lln2 [V] E = [V/m] x L ln2 1 L = = = ⇒ + ∫ ∫ VˆTherefore : E x [V/m] xLln2(1 )L = + − −ρ = −∇ • = −∇ • = ∇ = + = + 1 p o o 2 2 d x VP (D-ε E) ε •E (V/Lln2) (1 )dx L xLln2(1 )L Note: Non-uniform E(x) ε(x)MIT OpenCourseWare http://ocw.mit.edu 6.013 Electromagnetics and Applications Spring 2009 For information about citing these materials or our Terms of Use, visit:


View Full Document

MIT 6 013 - Estimating Static Fields

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download Estimating Static Fields
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Estimating Static Fields and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Estimating Static Fields 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?