DOC PREVIEW
MIT 6 013 - Dielectric Waveguides

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms� � � � � � 6.013 - Electromagnetics and Applications Fall 2005 Lecture 15 - Dielectric Waveguides Prof. Markus Zahn November 3 , 2005 I. TM Solutions ∂ = 0 ∂y We are considering solutions with ⎧ ⎪⎨ Re A2e−α(x−d)ej(ωt−kz z) x ≥ d Ez(x, z, t) = Re (A1 sin(kxx) + B1 cos(kxx)) eRe A3e+α(x+d)ej(ωt−kz z) j(ωt−kz z) x| | ≤ d x ≤ −d ⎪⎩ k2 + k2 = ω2�µ (in dielectric) x z −α2 + kz 2 = ω2�0µ0 (in free space) For propagation in the dielectric and evanescence in free space k2 = ω2�µ − k2 = ω2�0µ0 + α2 z x k2 < ω2�µ, k2 > ω2�0µ0 ⇒ ω2�0µ0 < k2 < ω2�µz z z 1 From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.� � ����A. Odd Solutions [Ez(x, z, t) = −Ez(−x, z, t)] ⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩ A2e−α(x−d) x ≥ d A1 sin(kxx) −A2eα(x+d) |x| ≤ d x ≤ −d Eˆz(x) = ∂Eˆx � · E ¯ ⇒ ∂x − jkzEˆz = 0 −jkz A2e−α(x−d) x > d α Eˆx jkz A1 cos(kxx)kx = < d − |x| x < −d ⇒ jkz A2eα(x+d) α− = −µ� × E ¯ ∂∂t H ¯ ⇒ Hˆx = 0, Hˆz = 0 1 ∂EˆzHˆy = −jωµ −jkzEˆx − ∂x = ⎧ ⎪⎨ ⎪⎩ α−jω�0 A2e−α(x−d) x ≥ d jω� −kx A1 cos(kxx) |x| ≤ d x ≤ −djω�0 A2eα(x+d) α− Boundary Conditions Ez(x = d+) = Ez(x = d ) A1 sin(kxd) = A2−⇒ Hy(x = d+) = Hy(x = d )−⇒ + jω�0 α A2 = + jω� kx A1 cos(kxd) A1 1 kx�0 �0kx = = α = tan(kxd)A2 sin(kxd) α� cos(kxd) ⇒ � Critical condition for a guided wave occurs when α = 0. At this point kxd = nπ, kz 2 = ω2�0µ0 �nπ �2 + ω2�0µ0 = ω2�µ ω2 =(nπ/d)2 , n = 1, 2, 3, . . . d ⇒ �µ − �0µ0 For real frequencies (ω2 > 0), �µ > �0µ0 B. Even Solutions [Ez(x, z, t) = +Ez(−x, z, t)] Eˆz(x) = ⎧ ⎪⎨ ⎪⎩ B2e−α(x−d) x ≥ d B1 cos(kxx) B2eα(x+d) x| | ≤ d x ≤ −d ∂Eˆx Eˆz = 0 − jkz∂x ⎧ ⎪⎨ −jkz B2e−α(x−d) x > d α ˆjkzEx = B1 sin(kxx) < d |x| x < −d ⇒ kx jkz ⎪⎩ B2eα(x+d) α 2� ����jω�0 B2e−α(x−d)−α x ≥ d jω� Hˆy = ⎧ ⎪⎨ ⎪⎩ kx B1 sin(kxx) jω�0 B2eα(x+d) α x| ≤ d x ≤ −d | Boundary Conditions Ez(x = d+) = Ez(x = d ) B2 = B1 cos(kxd)−⇒ Hy(x = d+) = Hy(x = djω�0 B2 = jω� B1 sin(kxd)−) ⇒ −α kx B2 �α �0kx B1 = cos(kxd) = −�0kx sin(kxd) ⇒ α = − � cot(kxd) Critical Condition: α = 0 ⇒ kxd = (2n + 1)π 2 , kz 2 = ω2�0µ0 �2(2n+1)π 2d ω2 n = 0, 1, 2, . . . = �µ − �0µ0 II. TE Solutions A. Odd Solutions ⎧ ⎪⎨ ⎪⎩ A2e−α(x−d) x ≥ d Hˆz = A1 sin(kxx) −A2eα(x−d) ≤ d |x| x ≤ −d ⎧ ⎪⎨ H ¯= ∂Hx + ∂Hz ∂Hˆx Hˆz = 0 ∂x − jkz� · ⇒ ∂x ∂z −jkz A2e−α(x−d) x > d α Hˆx jkz A1 cos(kxx)kx < d = − |x| x < −d ⎪⎩ jkz A2eα(x+d) α− ¯ ∂E ¯ Eˆx = 0, Eˆz = 0 H = � � × ∂t ⇒ ⎧ ⎪⎨ jω� Eˆy = −jkzHˆx − ∂Hˆz ∂x jωµ0 A2e−α(x−d) α x ≥ d jωµ Eˆy = A1 cos(kxx) |x| ≤ d x ≤ −d kx⎪⎩ jωµ0 A2eα(x+d) α Boundary Conditions jωµ0 ⇒ α A2 = jωµ kx A1 cos(kxd)Eˆy(x = d+) = Eˆy(x = d−) Hˆz(x = d+) = Hˆz(x = d−) ⇒ A2 = A1 sin(kxd) A2 µα µ0kx A1 = sin(kxd) = µ0kx cos(kxd) ⇒ α = µ tan(kxd) 3����B. Even Solutions ⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩ B2e−α(x−d) x ≥ d Hˆz B1 cos(kxx) B2eα(x+d) = ≤ d |x| x ≤ −d −jkz B2e−α(x−d) x > d α jkzHˆx B1 sin(kxx)= < d |x| x < −d kx jkz α B2eα(x+d) jωµ0 B2e−α(x−d) α x ≥ d jωµ Eˆy = B1 sin(kxx) ≤ d − |x| x ≤ −d kx jωµ0 B2eα(x+d) α− jωµ0 ⇒ α jωµ kx B1 sin(kxd)Eˆy(x = d+) = Eˆy(x = d−) B2 = − Hˆz(x = d+) = Hˆz(x = d−) ⇒ B2 = B1 cos(kxd) B2 αµ µ0kx B1 = cos(kxd) = −µ0kx sin(kxd) ⇒ α = −µ cot(kxd)


View Full Document

MIT 6 013 - Dielectric Waveguides

Documents in this Course
LASERS

LASERS

9 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Load more
Download Dielectric Waveguides
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Dielectric Waveguides and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Dielectric Waveguides 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?