ha lvh262 Homework 15 2 karakurt 56295 This print out should have 20 questions Multiple choice questions may continue on the next column or page find all choices before answering 001 10 0 points Find the value of the integral Z 1 I f x y dx 0 when f x y 6x 5x2 y 1 5 I 16 003 10 0 points Determine the value of the iterated integral I 4 Z 0 2 Z 1 2xy dx dy 1 1 I 24 2 I 26 5 1 I 3 y 3 3 I 30 5 2 I 3 y 2 3 4 I 28 3 I 6y 5y 2 5 I 32 5 4 I 3 y 3 004 10 0 points Evaluate the double integral Z Z I 3x y dxdy 5 5 I 6y y 2 2 A 6 I 3 5y when 002 10 0 points Determine the value of the double integral Z Z I f x y dxdy A n x y 0 x 2 0 y 1 1 I 8 A when f x y 3 and n o A x y 4 x 6 3 y 6 1 I 20 2 I 9 3 I 7 4 I 5 5 I 6 2 I 18 3 I 19 4 I 17 005 10 0 points Evaluate the iterated integral I Z 1 4Z 3 0 2 dx dy x y 2 o ha lvh262 Homework 15 2 karakurt 56295 1 I 2 I 3 I 4 I 5 I 6 I 4 ln 3 1 4 ln 2 3 16 2 ln 7 16 ln 7 1 16 ln 2 7 4 2 ln 3 006 008 f x y over the rectangle n o A x y 1 x 3 0 y 2 1 I ln 19 2 I 2 ln 21 3 I ln 21 4 I 2 ln 19 0 1 I e 3 e 2 e 1 1 5 I 19 2 I e 3 e 2 e 1 1 6 I 21 3 I e 3 e 2 e 1 1 e 007 e 2 1 009 1 I 0 1 I 8 ln 6 10 0 points Z ln 5 0 I e2x y dx dy 4 I 9 5 I 7 Z Z A 2 x2 dxdy 1 y2 when A n x y 0 x 2 1 I 5 3 2 I 11 6 2 I 10 3 I 11 10 0 points Evaluate the double integral Evaluate the iterated integral Z 2x y 1 8y y 2 10 0 points 2 4 I e 10 0 points Determine the value I of the integral of the function Evaluate the double integral Z 3Z 2 I ex y dxdy 3 2 3 I 2 4 I 13 6 o 0 y 1 ha lvh262 Homework 15 2 karakurt 56295 5 I 7 3 3 5 I e3 3 010 6 I e3 4 10 0 points Calculate the value of the double integral Z Z I 2x cos x y dxdy A when A is the rectangle n x y 0 x 2 012 10 0 points Evaluate the double integral Z Z I 6xyey dxdy A 0 y o 2 1 I 4 when A n o x y 0 x 4 0 y 1 1 I 48 2 I 2 I 47 3 I 2 4 3 I 51 4 I 4 4 I 50 5 I 2 5 I 49 6 I 2 013 011 10 0 points Evaluate the integral Z Z I 3xexy dxdy A over the rectangle A x y 0 x 1 0 y 3 10 0 points Find the volume of the solid lying under the plane z 9 3x y and above the rectangle n A x y 1 x 2 0 y 2 1 volume 5 cu units 1 I e3 2 2 volume 8 cu units 1 3 e 3 2 1 3 e 4 3 I 2 1 3 e 2 4 I 2 3 volume 9 cu units 2 I 4 volume 7 cu units 5 volume 6 cu units 014 o 10 0 points ha lvh262 Homework 15 2 karakurt 56295 Find the volume of the solid lying under the circular paraboloid z x2 y 2 and above the rectangle R 6 6 2 2 4 4 16 5 20 1 640 017 2 512 10 0 points 3 768 Find the volume of the solid bounded by the surface z 5 xy 4 480 and the planes x 4 x 4 y 0 y 1 5 960 as well as the plane z 0 015 10 0 points 1 volume 5 Find the volume of the solid bounded by the surface 2 volume 1 z 1 x 2 2 5y 3 volume 2 the planes x 4 and y 1 as well as the coordinate planes 4 volume 4 1 volume 3 5 volume 3 2 volume 1 3 volume 5 4 volume 2 5 volume 4 016 10 0 points Find the volume of the solid in the first octant bounded by the cylinder z 4 y 2 and the plane x 3 018 Evaluate the iterated integral Z 3Z 1 x y I dy dx 3 0 0 x y 1 I 3 4 2 I 5 4 3 I 1 1 18 4 I 1 2 2 13 5 I 3 2 3 12 10 0 points 019 10 0 points ha lvh262 Homework 15 2 karakurt 56295 5 The solid shown in lies below the graph of z f x y 4 x2 y 2 lies below the graph of and above the rectangle z f x y 4 x2 y 2 above the rectangle 1 x 1 2 y 2 0 x 1 0 y 2 in the xy plane Determine the volume of this solid 1 volume 17 cu units 3 2 volume 19 cu units 3 3 volume 5 cu units in the xy plane Determine the volume of this solid 1 Volume 23 cu units 4 volume 16 cu units 3 5 volume 6 cu units 2 Volume 22 cu units 3 Volume 25 cu units 4 Volume 26 cu units 5 Volume 24 cu units 020 10 0 points The solid shown in
View Full Document